Cloning of the wheat leaf rust resistance gene Lr47 introgressed from Aegilops speltoides
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-41833-2
Download full text from publisher
References listed on IDEAS
- Xiaopeng Ren & Chuyuan Wang & Zhuang Ren & Jing Wang & Peipei Zhang & Shuqing Zhao & Mengyu Li & Meng Yuan & Xiumei Yu & Zaifeng Li & Shisheng Chen & Xiaodong Wang, 2023. "Genetics of Resistance to Leaf Rust in Wheat: An Overview in a Genome-Wide Level," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
- Guifang Lin & Hui Chen & Bin Tian & Sunish K. Sehgal & Lovepreet Singh & Jingzhong Xie & Nidhi Rawat & Philomin Juliana & Narinder Singh & Sandesh Shrestha & Duane L. Wilson & Hannah Shult & Hyeonju L, 2022. "Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chao Ma & Xiubin Tian & Zhenjie Dong & Huanhuan Li & Xuexue Chen & Wenxuan Liu & Guihong Yin & Shuyang Ma & Liwei Zhang & Aizhong Cao & Cheng Liu & Hongfei Yan & Sunish K. Sehgal & Zhibin Zhang & Bao , 2024. "An Aegilops longissima NLR protein with integrated CC-BED module mediates resistance to wheat powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Huagang He & Zhaozhao Chen & Renchun Fan & Jie Zhang & Shanying Zhu & Jiale Wang & Qianyuan Zhang & Anli Gao & Shuangjun Gong & Lu Zhang & Yanan Li & Yitong Zhao & Simon G. Krattinger & Qian-Hua Shen , 2024. "A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41833-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.