IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41713-9.html
   My bibliography  Save this article

Grinding-induced supramolecular charge-transfer assemblies with switchable vapochromism toward haloalkane isomers

Author

Listed:
  • Jia-Rui Wu

    (Jilin University
    Jilin University)

  • Gengxin Wu

    (Jilin University)

  • Dongxia Li

    (Jilin University)

  • Meng-Hao Li

    (Jilin University)

  • Yan Wang

    (Jilin University)

  • Ying-Wei Yang

    (Jilin University)

Abstract

Synthetic macrocycles have proved to be of great application value in functional charge-transfer systems in the solid state in recent years. Here we show a switchable on-off type vapochromic system toward 1-/2-bromoalkane isomers by constructing solid-state charge-transfer complexes between electron-rich perethylated pillar[5]arene and electron-deficient aromatic acceptors including 4-nitrobenzonitrile and 1,4-dinitrobenzene. These charge-transfer complexes with different colors show opposite color changes upon exposure to the vapors of 1-bromoalkanes (fading) and 2-bromoalkanes (deepening). Single-crystal structures incorporating X-ray powder diffraction and spectral analyses demonstrate that this on-off type vapochromic behavior is mainly attributed to the destruction (off) and reconstruction (on) of the charge-transfer interactions between perethylated pillar[5]arene and the acceptors, for which the competitive host-guest binding of 1-bromoalkanes and the solid-state structural transformation triggered by 2-bromoalkanes are respectively responsible. This work provides a simple colorimetric method for distinguishing positional isomers with similar physical and chemical properties.

Suggested Citation

  • Jia-Rui Wu & Gengxin Wu & Dongxia Li & Meng-Hao Li & Yan Wang & Ying-Wei Yang, 2023. "Grinding-induced supramolecular charge-transfer assemblies with switchable vapochromism toward haloalkane isomers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41713-9
    DOI: 10.1038/s41467-023-41713-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41713-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41713-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao-Ni Han & Ying Han & Chuan-Feng Chen, 2021. "Supramolecular tessellations by the exo-wall interactions of pagoda[4]arene," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Dongdong Sun & Yong Wu & Xie Han & Simin Liu, 2023. "The host–guest inclusion driven by host-stabilized charge transfer for construction of sequentially red-shifted mechanochromic system," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Alok S. Tayi & Alexander K. Shveyd & Andrew C.-H. Sue & Jodi M. Szarko & Brian S. Rolczynski & Dennis Cao & T. Jackson Kennedy & Amy A. Sarjeant & Charlotte L. Stern & Walter F. Paxton & Wei Wu & Sanj, 2012. "Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes," Nature, Nature, vol. 488(7412), pages 485-489, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyu Chen & Wenjie Zhang & Wenzhi Yang & Fengcheng Xi & Hongyi He & Minghao Liang & Qian Dong & Jiawang Hou & Mengbin Wang & Guocan Yu & Jiong Zhou, 2024. "Separation of benzene and toluene associated with vapochromic behaviors by hybrid[4]arene-based co-crystals," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Li & Lingling Liu & Yuan Wang & Kun Liu & Zhe Zheng & Shougang Sun & Yongxu Hu & Liqiang Li & Chunju Li, 2024. "Structurally diverse macrocycle co-crystals for solid-state luminescence modulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Pengqing Bi & Tao Zhang & Yuanyuan Guo & Jianqiu Wang & Xian Wei Chua & Zhihao Chen & Wei Peng Goh & Changyun Jiang & Elbert E. M. Chia & Jianhui Hou & Le Yang, 2024. "Donor-acceptor bulk-heterojunction sensitizer for efficient solid-state infrared-to-visible photon up-conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Nan Zhang & Wencong Sun & Yao Zhang & Huan-Huan Jiang & Ren-Gen Xiong & Shuai Dong & Han-Yue Zhang, 2023. "Organic radical ferroelectric crystals with martensitic phase transition," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Nan Xue & He-Ye Zhou & Ying Han & Meng Li & Hai-Yan Lu & Chuan-Feng Chen, 2024. "A general supramolecular strategy for fabricating full-color-tunable thermally activated delayed fluorescence materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Le Zeng & Tiexin Zhang & Renhai Liu & Wenming Tian & Kaifeng Wu & Jingyi Zhu & Zhonghe Wang & Cheng He & Jing Feng & Xiangyang Guo & Abdoulkader Ibro Douka & Chunying Duan, 2023. "Chalcogen-bridged coordination polymer for the photocatalytic activation of aryl halides," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41713-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.