IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26729-3.html
   My bibliography  Save this article

Supramolecular tessellations by the exo-wall interactions of pagoda[4]arene

Author

Listed:
  • Xiao-Ni Han

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ying Han

    (Chinese Academy of Sciences)

  • Chuan-Feng Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Supramolecular tessellation has gained increasing interest in supramolecular chemistry for its structural aesthetics and potential applications in optics, magnetics and catalysis. In this work, a new kind of supramolecular tessellations (STs) have been fabricated by the exo-wall interactions of pagoda[4]arene (P4). ST with rhombic tiling pattern was first constructed by P4 itself through favorable π···π interactions between anthracene units of adjacent P4. Notably, various highly ordered STs with different tiling patterns have been fabricated based on exo-wall charge transfer interactions between electron-rich P4 and electron-deficient guests including 1,4-dinitrobenzene, terephthalonitrile and tetrafluoroterephthalonitrile. Interestingly, solvent modulation and guest selection played a crucial role in controlling the molecular arrangements in the co-crystal superstructures. This work not only proves that P4 is an excellent macrocyclic building block for the fabrication of various STs, but also provides a new perspective and opportunity for the design and construction of supramolecular two-dimensional organic materials.

Suggested Citation

  • Xiao-Ni Han & Ying Han & Chuan-Feng Chen, 2021. "Supramolecular tessellations by the exo-wall interactions of pagoda[4]arene," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26729-3
    DOI: 10.1038/s41467-021-26729-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26729-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26729-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Wang & Huang Wu & Penghao Li & Su Chen & Leighton O. Jones & Martín A. Mosquera & Long Zhang & Kang Cai & Hongliang Chen & Xiao-Yang Chen & Charlotte L. Stern & Michael R. Wasielewski & Mark A. Rat, 2020. "Two-photon excited deep-red and near-infrared emissive organic co-crystals," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. James A. Theobald & Neil S. Oxtoby & Michael A. Phillips & Neil R. Champness & Peter H. Beton, 2003. "Controlling molecular deposition and layer structure with supramolecular surface assemblies," Nature, Nature, vol. 424(6952), pages 1029-1031, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Li & Lingling Liu & Yuan Wang & Kun Liu & Zhe Zheng & Shougang Sun & Yongxu Hu & Liqiang Li & Chunju Li, 2024. "Structurally diverse macrocycle co-crystals for solid-state luminescence modulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Jia-Rui Wu & Gengxin Wu & Dongxia Li & Meng-Hao Li & Yan Wang & Ying-Wei Yang, 2023. "Grinding-induced supramolecular charge-transfer assemblies with switchable vapochromism toward haloalkane isomers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Nan Xue & He-Ye Zhou & Ying Han & Meng Li & Hai-Yan Lu & Chuan-Feng Chen, 2024. "A general supramolecular strategy for fabricating full-color-tunable thermally activated delayed fluorescence materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Li & Lingling Liu & Yuan Wang & Kun Liu & Zhe Zheng & Shougang Sun & Yongxu Hu & Liqiang Li & Chunju Li, 2024. "Structurally diverse macrocycle co-crystals for solid-state luminescence modulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Debasish Barman & Mari Annadhasan & Anil Parsram Bidkar & Pachaiyappan Rajamalli & Debika Barman & Siddhartha Sankar Ghosh & Rajadurai Chandrasekar & Parameswar Krishnan Iyer, 2023. "Highly efficient color-tunable organic co-crystals unveiling polymorphism, isomerism, delayed fluorescence for optical waveguides and cell-imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26729-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.