IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41697-6.html
   My bibliography  Save this article

Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption

Author

Listed:
  • Zhimeng Tang

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    Kunming University of Science and Technology)

  • Lei Xu

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    Kunming University of Science and Technology
    Kunming University of Science and Technology)

  • Cheng Xie

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    Kunming University of Science and Technology)

  • Lirong Guo

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    Kunming University of Science and Technology)

  • Libo Zhang

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    Kunming University of Science and Technology)

  • Shenghui Guo

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    Kunming University of Science and Technology)

  • Jinhui Peng

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    Kunming University of Science and Technology)

Abstract

The remarkable advantages of heterointerface and defect engineering and their unique electromagnetic characteristics inject infinite vitality into the design of advanced carbon-matrix electromagnetic wave absorbers. However, understanding the interface and dipole effects based on microscopic and macroscopic perspectives, rather than semi-empirical rules, can facilitate the design of heterointerfaces and defects to adjust the impedance matching and electromagnetic wave absorption of the material, which is currently lacking. Herein, CuCo2S4@Expanded Graphite heterostructure with multiple heterointerfaces and cation defects are reported, and the morphology, interfaces and defects of component are regulated by varying the concentration of metal ions. The results show that the 3D flower-honeycomb morphology, the crystal-crystal/amorphous heterointerfaces and the abundant cation defects can effectively adjust the conductive and polarization losses, achieve the impedance matching balance of carbon materials, and improve the absorption of electromagnetic wave. For the sample CEG-6, the effective absorption of Ku band with RLmin of −72.28 dB and effective absorption bandwidth of 4.14 GHz is realized at 1.4 mm, while the filler loading is only 7.0 wt. %. This article reports on the establishment of potential relationship between crystal-crystal/amorphous heterointerfaces, cation defects, and the impedance matching of carbon materials.

Suggested Citation

  • Zhimeng Tang & Lei Xu & Cheng Xie & Lirong Guo & Libo Zhang & Shenghui Guo & Jinhui Peng, 2023. "Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41697-6
    DOI: 10.1038/s41467-023-41697-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41697-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41697-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huishan Shang & Xiangyi Zhou & Juncai Dong & Ang Li & Xu Zhao & Qinghua Liu & Yue Lin & Jiajing Pei & Zhi Li & Zhuoli Jiang & Danni Zhou & Lirong Zheng & Yu Wang & Jing Zhou & Zhengkun Yang & Rui Cao , 2020. "Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Qu & Hanxu Sun & Yuyao Sun & Mukun He & Ruizhe Xing & Junwei Gu & Jie Kong, 2024. "2D/2D coupled MOF/Fe composite metamaterials enable robust ultra–broadband microwave absorption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yurui Fan & Haomiao Xu & Guanqun Gao & Mingming Wang & Wenjun Huang & Lei Ma & Yancai Yao & Zan Qu & Pengfei Xie & Bin Dai & Naiqiang Yan, 2024. "Asymmetric Ru-In atomic pairs promote highly active and stable acetylene hydrochlorination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Hongqiang Jin & Peipei Li & Peixin Cui & Jinan Shi & Wu Zhou & Xiaohu Yu & Weiguo Song & Changyan Cao, 2022. "Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Meihuan Liu & Jing Zhang & Hui Su & Yaling Jiang & Wanlin Zhou & Chenyu Yang & Shuowen Bo & Jun Pan & Qinghua Liu, 2024. "In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Kejun Bu & Qingyang Hu & Xiaohuan Qi & Dong Wang & Songhao Guo & Hui Luo & Tianquan Lin & Xiaofeng Guo & Qiaoshi Zeng & Yang Ding & Fuqiang Huang & Wenge Yang & Ho-Kwang Mao & Xujie Lü, 2022. "Nested order-disorder framework containing a crystalline matrix with self-filled amorphous-like innards," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Juncai Dong & Yangyang Liu & Jiajing Pei & Haijing Li & Shufang Ji & Lei Shi & Yaning Zhang & Can Li & Cheng Tang & Jiangwen Liao & Shiqing Xu & Huabin Zhang & Qi Li & Shenlong Zhao, 2023. "Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Jingsen Bai & Tuo Zhao & Mingjun Xu & Bingbao Mei & Liting Yang & Zhaoping Shi & Siyuan Zhu & Ying Wang & Zheng Jiang & Jin Zhao & Junjie Ge & Meiling Xiao & Changpeng Liu & Wei Xing, 2024. "Monosymmetric Fe-N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yanzhe Shi & Bingcheng Luo & Rui Sang & Dandan Cui & Ye Sun & Runqi Liu & Zili Zhang & Yifei Sun & Henrik Junge & Matthias Beller & Xiang Li, 2024. "Combination of nanoparticles with single-metal sites synergistically boosts co-catalyzed formic acid dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Chao-Hai Gu & Song Wang & Ai-Yong Zhang & Chang Liu & Jun Jiang & Han-Qing Yu, 2024. "Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Yangyang Liu & Can Li & Chunhui Tan & Zengxia Pei & Tao Yang & Shuzhen Zhang & Qianwei Huang & Yihan Wang & Zheng Zhou & Xiaozhou Liao & Juncai Dong & Hao Tan & Wensheng Yan & Huajie Yin & Zhao-Qing L, 2023. "Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Li Zhang & Xiaoju Yang & Qing Yuan & Zhiming Wei & Jie Ding & Tianshu Chu & Chao Rong & Qiao Zhang & Zhenkun Ye & Fu-Zhen Xuan & Yueming Zhai & Bowei Zhang & Xuan Yang, 2023. "Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Xiao Zhou & Yuan Min & Changming Zhao & Cai Chen & Ming-Kun Ke & Shi-Lin Xu & Jie-Jie Chen & Yuen Wu & Han-Qing Yu, 2024. "Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Xin Zhao & Ruiqi Fang & Fengliang Wang & Xiangpeng Kong & Yingwei Li, 2022. "Atomic design of dual-metal hetero-single-atoms for high-efficiency synthesis of natural flavones," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Xiubei Yang & Qizheng An & Xuewen Li & Yubin Fu & Shuai Yang & Minghao Liu & Qing Xu & Gaofeng Zeng, 2024. "Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41697-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.