IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41479-0.html
   My bibliography  Save this article

Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites

Author

Listed:
  • Xinhui Li

    (Wuhan University of Technology)

  • Shan He

    (Tsinghua University)

  • Yanda Jiang

    (Wuhan University of Technology)

  • Jian Wang

    (Wuhan University of Technology)

  • Yi Yu

    (Soochow University)

  • Xiaofei Liu

    (Wuhan University of Technology)

  • Feng Zhu

    (University of Science and Technology of China)

  • Yimei Xie

    (Wuhan University of Technology)

  • Youyong Li

    (Soochow University)

  • Cheng Ma

    (University of Science and Technology of China)

  • Zhonghui Shen

    (Wuhan University of Technology)

  • Baowen Li

    (Wuhan University of Technology)

  • Yang Shen

    (Tsinghua University)

  • Xin Zhang

    (Wuhan University of Technology
    Wuhan University of Technology)

  • Shujun Zhang

    (University of Wollongong)

  • Ce-Wen Nan

    (Tsinghua University)

Abstract

Polymer nanocomposites with nanoparticles dispersed in polymer matrices have attracted extensive attention due to their significantly improved overall performance, in which the nanoparticle-polymer interface plays a key role. Understanding the structures and properties of the interfacial region, however, remains a major challenge for polymer nanocomposites. Here, we directly observe the presence of two interfacial polymer layers around a nanoparticle in polar polymers, i.e., an inner bound polar layer (~10 nm thick) with aligned dipoles and an outer polar layer (over 100 nm thick) with randomly orientated dipoles. Our results reveal that the impacts of the local nanoparticle surface potential and interparticle distance on molecular dipoles induce interfacial polymer layers with different polar molecular conformations from the bulk polymer. The bilayer interfacial features lead to an exceptional enhancement in polarity-related properties of polymer nanocomposites at ultralow nanoparticle loadings. By maximizing the contribution of inner bound polar layer via a nanolamination design, we achieve an ultrahigh dielectric energy storage density of 86 J/cm3, far superior to state-of-the-art polymers and nanocomposites.

Suggested Citation

  • Xinhui Li & Shan He & Yanda Jiang & Jian Wang & Yi Yu & Xiaofei Liu & Feng Zhu & Yimei Xie & Youyong Li & Cheng Ma & Zhonghui Shen & Baowen Li & Yang Shen & Xin Zhang & Shujun Zhang & Ce-Wen Nan, 2023. "Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41479-0
    DOI: 10.1038/s41467-023-41479-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41479-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41479-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Liu & Haibibu Aziguli & Bing Zhang & Wenhan Xu & Wenchang Lu & J. Bernholc & Qing Wang, 2018. "Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary," Nature, Nature, vol. 562(7725), pages 96-100, October.
    2. Qi Li & Lei Chen & Matthew R. Gadinski & Shihai Zhang & Guangzu Zhang & Haoyu U. Li & Elissei Iagodkine & Aman Haque & Long-Qing Chen & Thomas N. Jackson & Qing Wang, 2015. "Flexible high-temperature dielectric materials from polymer nanocomposites," Nature, Nature, vol. 523(7562), pages 576-579, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zilong Xie & Jianan Zhu & Zhengli Dou & Yongzheng Zhang & Ke Wang & Kai Wu & Qiang Fu, 2024. "Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xinhui Li & Bo Liu & Jian Wang & Shuxuan Li & Xin Zhen & Jiapeng Zhi & Junjie Zou & Bei Li & Zhonghui Shen & Xin Zhang & Shujun Zhang & Ce-Wen Nan, 2024. "High-temperature capacitive energy storage in polymer nanocomposites through nanoconfinement," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rishi Gurnani & Stuti Shukla & Deepak Kamal & Chao Wu & Jing Hao & Christopher Kuenneth & Pritish Aklujkar & Ashish Khomane & Robert Daniels & Ajinkya A. Deshmukh & Yang Cao & Gregory Sotzing & Rampi , 2024. "AI-assisted discovery of high-temperature dielectrics for energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Fan Xu & Yuke Li & Qing Zou & Yu Shuang He & Zijia Shen & Chen Li & Huijuan Zhang & Feipeng Wang & Jian Li & Yu Wang, 2022. "The electric field cavity array effect of 2D nano-sieves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yu-An Xiong & Sheng-Shun Duan & Hui-Hui Hu & Jie Yao & Qiang Pan & Tai-Ting Sha & Xiao Wei & Hao-Ran Ji & Jun Wu & Yu-Meng You, 2024. "Enhancement of phase transition temperature through hydrogen bond modification in molecular ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Weichen Zhao & Diming Xu & Da Li & Max Avdeev & Hongmei Jing & Mengkang Xu & Yan Guo & Dier Shi & Tao Zhou & Wenfeng Liu & Dong Wang & Di Zhou, 2023. "Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Asif Abdullah Khan & Avi Mathur & Lu Yin & Mahmoud Almadhoun & Jian Yin & Majid Haji Bagheri & Md Fahim Al Fattah & Araz Rajabi-Abhari & Ning Yan & Boxin Zhao & Vivek Maheshwari & Dayan Ban, 2024. "Breaking dielectric dilemma via polymer functionalized perovskite piezocomposite with large current density output," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Bo Li & Chuanyang Cai & Yang Liu & Fang Wang & Bin Yang & Qikai Li & Pengxiang Zhang & Biao Deng & Pengfei Hou & Weishu Liu, 2023. "Ultrasensitive mechanical/thermal response of a P(VDF-TrFE) sensor with a tailored network interconnection interface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yi, Juan & Ye, Zhiwei & Zhang, Shixian & Song, Yiheng & Cao, Zhilong & Liu, Bin & Li, Chenjian & Liu, Shuang & Nie, Shuai & Xiong, Chuanxi, 2024. "Corona: An effective polarization strategy of polymer composites with high-k filler for piezoelectric nanogenerators," Applied Energy, Elsevier, vol. 353(PA).
    8. Minzheng Yang & Weibin Ren & Zenghui Jin & Erxiang Xu & Yang Shen, 2024. "Enhanced high-temperature energy storage performances in polymer dielectrics by synergistically optimizing band-gap and polarization of dipolar glass," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Yuanjie Su & Weixiong Li & Xiaoxing Cheng & Yihao Zhou & Shuai Yang & Xu Zhang & Chunxu Chen & Tiannan Yang & Hong Pan & Guangzhong Xie & Guorui Chen & Xun Zhao & Xiao Xiao & Bei Li & Huiling Tai & Ya, 2022. "High-performance piezoelectric composites via β phase programming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Zilong Xie & Jianan Zhu & Zhengli Dou & Yongzheng Zhang & Ke Wang & Kai Wu & Qiang Fu, 2024. "Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Rui Lu & Jian Wang & Tingzhi Duan & Tian-Yi Hu & Guangliang Hu & Yupeng Liu & Weijie Fu & Qiuyang Han & Yiqin Lu & Lu Lu & Shao-Dong Cheng & Yanzhu Dai & Dengwei Hu & Zhonghui Shen & Chun-Lin Jia & Ch, 2024. "Metadielectrics for high-temperature energy storage capacitors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Rui Wang & Yujie Zhu & Jing Fu & Mingcong Yang & Zhaoyu Ran & Junluo Li & Manxi Li & Jun Hu & Jinliang He & Qi Li, 2023. "Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Mengfan Guo & Erxiang Xu & Houbing Huang & Changqing Guo & Hetian Chen & Shulin Chen & Shan He & Le Zhou & Jing Ma & Zhonghui Shen & Ben Xu & Di Yi & Peng Gao & Ce-Wen Nan & Neil. D. Mathur & Yang She, 2024. "Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Yuzhong Hu & Kaushik Parida & Hao Zhang & Xin Wang & Yongxin Li & Xinran Zhou & Samuel Alexander Morris & Weng Heng Liew & Haomin Wang & Tao Li & Feng Jiang & Mingmin Yang & Marin Alexe & Zehui Du & C, 2022. "Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Xinhui Li & Bo Liu & Jian Wang & Shuxuan Li & Xin Zhen & Jiapeng Zhi & Junjie Zou & Bei Li & Zhonghui Shen & Xin Zhang & Shujun Zhang & Ce-Wen Nan, 2024. "High-temperature capacitive energy storage in polymer nanocomposites through nanoconfinement," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Mejia, Cristian & Kajikawa, Yuya, 2020. "Emerging topics in energy storage based on a large-scale analysis of academic articles and patents," Applied Energy, Elsevier, vol. 263(C).
    17. Yao Wang & Chen Huang & Ziwei Cheng & Zhenghao Liu & Yuan Zhang & Yantao Zheng & Shulin Chen & Jie Wang & Peng Gao & Yang Shen & Chungang Duan & Yuan Deng & Ce-Wen Nan & Jiangyu Li, 2024. "Halide Perovskite Inducing Anomalous Nonvolatile Polarization in Poly(vinylidene fluoride)-based Flexible Nanocomposites," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41479-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.