IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38145-w.html
   My bibliography  Save this article

Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage

Author

Listed:
  • Rui Wang

    (Tsinghua University)

  • Yujie Zhu

    (Tsinghua University)

  • Jing Fu

    (Tsinghua University)

  • Mingcong Yang

    (Tsinghua University)

  • Zhaoyu Ran

    (Tsinghua University)

  • Junluo Li

    (Tsinghua University)

  • Manxi Li

    (Tsinghua University)

  • Jun Hu

    (Tsinghua University)

  • Jinliang He

    (Tsinghua University)

  • Qi Li

    (Tsinghua University)

Abstract

Many mainstream dielectric energy storage technologies in the emergent applications, such as renewable energy, electrified transportations and advanced propulsion systems, are usually required to operate under harsh-temperature conditions. However, excellent capacitive performance and thermal stability tend to be mutually exclusive in the current polymer dielectric materials and applications. Here, we report a strategy to tailor structural units for the design of high-temperature polymer dielectrics. A library of polyimide-derived polymers from diverse combinations of structural units are predicted, and 12 representative polymers are synthesized for direct experimental investigation. This study provides important insights into decisive structural factors necessary to achieve robust and stable dielectrics with high energy storage capabilities at elevated temperature. We also find that the high-temperature insulation performance would experience diminishing marginal utility as the bandgap increases beyond a critical point, which is strongly correlated to the dihedral angle between neighboring planes of conjugation in these polymers. By experimentally testing the optimized and predicted structures, an increased energy storage at temperatures up to 250 °C is observed. We discuss the possibility for this strategy to be generally applied to other polymer dielectrics to achieve further performance enhancement.

Suggested Citation

  • Rui Wang & Yujie Zhu & Jing Fu & Mingcong Yang & Zhaoyu Ran & Junluo Li & Manxi Li & Jun Hu & Jinliang He & Qi Li, 2023. "Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38145-w
    DOI: 10.1038/s41467-023-38145-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38145-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38145-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Li & Lei Chen & Matthew R. Gadinski & Shihai Zhang & Guangzu Zhang & Haoyu U. Li & Elissei Iagodkine & Aman Haque & Long-Qing Chen & Thomas N. Jackson & Qing Wang, 2015. "Flexible high-temperature dielectric materials from polymer nanocomposites," Nature, Nature, vol. 523(7562), pages 576-579, July.
    2. Chao Yuan & Yao Zhou & Yujie Zhu & Jiajie Liang & Shaojie Wang & Simin Peng & Yushu Li & Sang Cheng & Mingcong Yang & Jun Hu & Bo Zhang & Rong Zeng & Jinliang He & Qi Li, 2020. "Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Xu & Yuke Li & Qing Zou & Yu Shuang He & Zijia Shen & Chen Li & Huijuan Zhang & Feipeng Wang & Jian Li & Yu Wang, 2022. "The electric field cavity array effect of 2D nano-sieves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xinhui Li & Shan He & Yanda Jiang & Jian Wang & Yi Yu & Xiaofei Liu & Feng Zhu & Yimei Xie & Youyong Li & Cheng Ma & Zhonghui Shen & Baowen Li & Yang Shen & Xin Zhang & Shujun Zhang & Ce-Wen Nan, 2023. "Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Weichen Zhao & Diming Xu & Da Li & Max Avdeev & Hongmei Jing & Mengkang Xu & Yan Guo & Dier Shi & Tao Zhou & Wenfeng Liu & Dong Wang & Di Zhou, 2023. "Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yi, Juan & Ye, Zhiwei & Zhang, Shixian & Song, Yiheng & Cao, Zhilong & Liu, Bin & Li, Chenjian & Liu, Shuang & Nie, Shuai & Xiong, Chuanxi, 2024. "Corona: An effective polarization strategy of polymer composites with high-k filler for piezoelectric nanogenerators," Applied Energy, Elsevier, vol. 353(PA).
    5. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Mejia, Cristian & Kajikawa, Yuya, 2020. "Emerging topics in energy storage based on a large-scale analysis of academic articles and patents," Applied Energy, Elsevier, vol. 263(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38145-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.