IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41349-9.html
   My bibliography  Save this article

Multimodal spatiotemporal transcriptomic resolution of embryonic palate osteogenesis

Author

Listed:
  • Jeremie Oliver Piña

    (National Institutes of Health (NIH)
    University of Utah
    University of Maryland)

  • Resmi Raju

    (National Institutes of Health (NIH))

  • Daniela M. Roth

    (National Institutes of Health (NIH)
    University of Alberta)

  • Emma Wentworth Winchester

    (University of Connecticut)

  • Parna Chattaraj

    (National Institutes of Health (NIH))

  • Fahad Kidwai

    (National Institutes of Health (NIH))

  • Fabio R. Faucz

    (National Institutes of Health (NIH))

  • James Iben

    (National Institutes of Health (NIH))

  • Apratim Mitra

    (National Institutes of Health (NIH))

  • Kiersten Campbell

    (National Institutes of Health (NIH))

  • Gus Fridell

    (National Institutes of Health (NIH))

  • Caroline Esnault

    (National Institutes of Health (NIH))

  • Justin L. Cotney

    (University of Connecticut)

  • Ryan K. Dale

    (National Institutes of Health (NIH))

  • Rena N. D’Souza

    (National Institutes of Health (NIH))

Abstract

The terminal differentiation of osteoblasts and subsequent formation of bone marks an important phase in palate development that leads to the separation of the oral and nasal cavities. While the morphogenetic events preceding palatal osteogenesis are well explored, major gaps remain in our understanding of the molecular mechanisms driving the formation of this bony union of the fusing palate. Through bulk, single-nucleus, and spatially resolved RNA-sequencing analyses of the developing secondary palate, we identify a shift in transcriptional programming between embryonic days 14.5 and 15.5 pinpointing the onset of osteogenesis. We define spatially restricted expression patterns of key osteogenic marker genes that are differentially expressed between these developmental timepoints. Finally, we identify genes in the palate highly expressed by palate nasal epithelial cells, also enriched within palatal osteogenic mesenchymal cells. This investigation provides a relevant framework to advance palate-specific diagnostic and therapeutic biomarker discovery.

Suggested Citation

  • Jeremie Oliver Piña & Resmi Raju & Daniela M. Roth & Emma Wentworth Winchester & Parna Chattaraj & Fahad Kidwai & Fabio R. Faucz & James Iben & Apratim Mitra & Kiersten Campbell & Gus Fridell & Caroli, 2023. "Multimodal spatiotemporal transcriptomic resolution of embryonic palate osteogenesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41349-9
    DOI: 10.1038/s41467-023-41349-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41349-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41349-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Qiu, 2020. "Embracing the dropouts in single-cell RNA-seq analysis," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Tristan W. Fowler & Troy L. Mitchell & Claudia Y. Janda & Liqin Xie & Shengjiang Tu & Hui Chen & Haili Zhang & Jingjing Ye & Brian Ouyang & Tom Z. Yuan & Sung-Jin Lee & Maureen Newman & Nikita Tripura, 2021. "Development of selective bispecific Wnt mimetics for bone loss and repair," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Karen J. Liu & Joseph R. Arron & Kryn Stankunas & Gerald R. Crabtree & Michael T. Longaker, 2007. "Chemical rescue of cleft palate and midline defects in conditional GSK-3β mice," Nature, Nature, vol. 446(7131), pages 79-82, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    2. Ziqi Zhang & Haoran Sun & Ragunathan Mariappan & Xi Chen & Xinyu Chen & Mika S. Jain & Mirjana Efremova & Sarah A. Teichmann & Vaibhav Rajan & Xiuwei Zhang, 2023. "scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Geert-Jan Huizing & Ina Maria Deutschmann & Gabriel Peyré & Laura Cantini, 2023. "Paired single-cell multi-omics data integration with Mowgli," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Eloise Berson & Anjali Sreenivas & Thanaphong Phongpreecha & Amalia Perna & Fiorella C. Grandi & Lei Xue & Neal G. Ravindra & Neelufar Payrovnaziri & Samson Mataraso & Yeasul Kim & Camilo Espinosa & A, 2023. "Whole genome deconvolution unveils Alzheimer’s resilient epigenetic signature," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Wen Jin & Yuting Dai & Li Chen & Honghu Zhu & Fangyi Dong & Hongming Zhu & Guoyu Meng & Junmin Li & Saijuan Chen & Zhu Chen & Hai Fang & Kankan Wang, 2024. "Cellular hierarchy insights reveal leukemic stem-like cells and early death risk in acute promyelocytic leukemia," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Hyun Kim & Won Chang & Seok Joo Chae & Jong-Eun Park & Minseok Seo & Jae Kyoung Kim, 2024. "scLENS: data-driven signal detection for unbiased scRNA-seq data analysis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Candace C. Liu & Noah F. Greenwald & Alex Kong & Erin F. McCaffrey & Ke Xuan Leow & Dunja Mrdjen & Bryan J. Cannon & Josef Lorenz Rumberger & Sricharan Reddy Varra & Michael Angelo, 2023. "Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41349-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.