IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40071-w.html
   My bibliography  Save this article

Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3

Author

Listed:
  • Frederick Richards

    (University of Oxford)

  • Marta J. Llorca-Cardenosa

    (University of Oxford)

  • Jamie Langton

    (University of Oxford)

  • Sara C. Buch-Larsen

    (University of Copenhagen)

  • Noor F. Shamkhi

    (University of Oxford)

  • Abhishek Bharadwaj Sharma

    (University of Oxford)

  • Michael L. Nielsen

    (University of Copenhagen)

  • Nicholas D. Lakin

    (University of Oxford)

Abstract

Although Poly(ADP-ribose)-polymerases (PARPs) are key regulators of genome stability, how site-specific ADP-ribosylation regulates DNA repair is unclear. Here, we describe a novel role for PARP1 and PARP2 in regulating Rad52-dependent replication fork repair to maintain cell viability when homologous recombination is dysfunctional, suppress replication-associated DNA damage, and maintain genome stability. Mechanistically, Mre11 and ATM are required for induction of PARP activity in response to replication stress that in turn promotes break-induced replication (BIR) through assembly of Rad52 at stalled/damaged replication forks. Further, by mapping ADP-ribosylation sites induced upon replication stress, we identify that PolD3 is a target for PARP1/PARP2 and that its site-specific ADP-ribosylation is required for BIR activity, replication fork recovery and genome stability. Overall, these data identify a critical role for Mre11-dependent PARP activation and site-specific ADP-ribosylation in regulating BIR to maintain genome integrity during DNA synthesis.

Suggested Citation

  • Frederick Richards & Marta J. Llorca-Cardenosa & Jamie Langton & Sara C. Buch-Larsen & Noor F. Shamkhi & Abhishek Bharadwaj Sharma & Michael L. Nielsen & Nicholas D. Lakin, 2023. "Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40071-w
    DOI: 10.1038/s41467-023-40071-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40071-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40071-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sofija Mijic & Ralph Zellweger & Nagaraja Chappidi & Matteo Berti & Kurt Jacobs & Karun Mutreja & Sebastian Ursich & Arnab Ray Chaudhuri & Andre Nussenzweig & Pavel Janscak & Massimo Lopes, 2017. "Replication fork reversal triggers fork degradation in BRCA2-defective cells," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    2. Gabriel Balmus & Domenic Pilger & Julia Coates & Mukerrem Demir & Matylda Sczaniecka-Clift & Ana C. Barros & Michael Woods & Beiyuan Fu & Fengtang Yang & Elisabeth Chen & Matthias Ostermaier & Tatjana, 2019. "ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    3. Robert L. Dilley & Priyanka Verma & Nam Woo Cho & Harrison D. Winters & Anne R. Wondisford & Roger A. Greenberg, 2016. "Break-induced telomere synthesis underlies alternative telomere maintenance," Nature, Nature, vol. 539(7627), pages 54-58, November.
    4. Eva Malacaria & Giusj Monia Pugliese & Masayoshi Honda & Veronica Marabitti & Francesca Antonella Aiello & Maria Spies & Annapaola Franchitto & Pietro Pichierri, 2019. "Author Correction: Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    5. Stephen J. Pettitt & Dragomir B. Krastev & Inger Brandsma & Amy Dréan & Feifei Song & Radoslav Aleksandrov & Maria I. Harrell & Malini Menon & Rachel Brough & James Campbell & Jessica Frankum & Michae, 2018. "Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    6. Xianning Lai & Ronan Broderick & Valérie Bergoglio & Jutta Zimmer & Sophie Badie & Wojciech Niedzwiedz & Jean-Sébastien Hoffmann & Madalena Tarsounas, 2017. "Correction: Corrigendum: MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells," Nature Communications, Nature, vol. 8(1), pages 1-3, December.
    7. Eva Malacaria & Giusj Monia Pugliese & Masayoshi Honda & Veronica Marabitti & Francesca Antonella Aiello & Maria Spies & Annapaola Franchitto & Pietro Pichierri, 2019. "Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation," Nature Communications, Nature, vol. 10(1), pages 1-19, December.
    8. Xianning Lai & Ronan Broderick & Valérie Bergoglio & Jutta Zimmer & Sophie Badie & Wojciech Niedzwiedz & Jean-Sébastien Hoffmann & Madalena Tarsounas, 2017. "MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    9. Sheroy Minocherhomji & Songmin Ying & Victoria A. Bjerregaard & Sara Bursomanno & Aiste Aleliunaite & Wei Wu & Hocine W. Mankouri & Huahao Shen & Ying Liu & Ian D. Hickson, 2015. "Replication stress activates DNA repair synthesis in mitosis," Nature, Nature, vol. 528(7581), pages 286-290, December.
    10. Pauline Chanut & Sébastien Britton & Julia Coates & Stephen P. Jackson & Patrick Calsou, 2016. "Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks," Nature Communications, Nature, vol. 7(1), pages 1-12, November.
    11. Ivo A. Hendriks & Sara C. Buch-Larsen & Evgeniia Prokhorova & Jonas D. Elsborg & Alexandra K.L.F.S. Rebak & Kang Zhu & Dragana Ahel & Claudia Lukas & Ivan Ahel & Michael L. Nielsen, 2021. "The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    12. George E. Ronson & Ann Liza Piberger & Martin R. Higgs & Anna L. Olsen & Grant S. Stewart & Peter J. McHugh & Eva Petermann & Nicholas D. Lakin, 2018. "PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edoardo José Longarini & Ivan Matić, 2024. "Preserving ester-linked modifications reveals glutamate and aspartate mono-ADP-ribosylation by PARP1 and its reversal by PARG," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Daniela Muoio & Natalie Laspata & Rachel L. Dannenberg & Caroline Curry & Simone Darkoa-Larbi & Mark Hedglin & Shikhar Uttam & Elise Fouquerel, 2024. "PARP2 promotes Break Induced Replication-mediated telomere fragility in response to replication stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    2. George E. Ronson & Katarzyna Starowicz & Elizabeth J. Anthony & Ann Liza Piberger & Lucy C. Clarke & Alexander J. Garvin & Andrew D. Beggs & Celina M. Whalley & Matthew J. Edmonds & James F. J. Beesle, 2023. "Mechanisms of synthetic lethality between BRCA1/2 and 53BP1 deficiencies and DNA polymerase theta targeting," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Wezley C. Griffin & David R. McKinzey & Kathleen N. Klinzing & Rithvik Baratam & Achini Eliyapura & Michael A. Trakselis, 2022. "A multi-functional role for the MCM8/9 helicase complex in maintaining fork integrity during replication stress," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Domagoj Vugic & Isaac Dumoulin & Charlotte Martin & Anna Minello & Lucia Alvaro-Aranda & Jesus Gomez-Escudero & Rady Chaaban & Rana Lebdy & Catharina Nicolai & Virginie Boucherit & Cyril Ribeyre & Ang, 2023. "Replication gap suppression depends on the double-strand DNA binding activity of BRCA2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Anastasia Hale & Ashna Dhoonmoon & Joshua Straka & Claudia M. Nicolae & George-Lucian Moldovan, 2023. "Multi-step processing of replication stress-derived nascent strand DNA gaps by MRE11 and EXO1 nucleases," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Daniela Muoio & Natalie Laspata & Rachel L. Dannenberg & Caroline Curry & Simone Darkoa-Larbi & Mark Hedglin & Shikhar Uttam & Elise Fouquerel, 2024. "PARP2 promotes Break Induced Replication-mediated telomere fragility in response to replication stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Simon D. Schwarz & Jianming Xu & Kapila Gunasekera & David Schürmann & Cathrine B. Vågbø & Elena Ferrari & Geir Slupphaug & Michael O. Hottiger & Primo Schär & Roland Steinacher, 2024. "Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Ashna Dhoonmoon & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Ronan Broderick & Veronica Cherdyntseva & Jadwiga Nieminuszczy & Eleni Dragona & Maria Kyriakaki & Theodora Evmorfopoulou & Sarantis Gagos & Wojciech Niedzwiedz, 2023. "Pathway choice in the alternative telomere lengthening in neoplasia is dictated by replication fork processing mediated by EXD2’s nuclease activity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Martin Andrs & Henriette Stoy & Barbora Boleslavska & Nagaraja Chappidi & Radhakrishnan Kanagaraj & Zuzana Nascakova & Shruti Menon & Satyajeet Rao & Anna Oravetzova & Jana Dobrovolna & Kalpana Surend, 2023. "Excessive reactive oxygen species induce transcription-dependent replication stress," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Diego Dibitetto & Martin Liptay & Francesca Vivalda & Hülya Dogan & Ewa Gogola & Martín González Fernández & Alexandra Duarte & Jonas A. Schmid & Morgane Decollogny & Paola Francica & Sara Przetocka &, 2024. "H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Courtney A Lovejoy & Kaori Takai & Michael S Huh & David J Picketts & Titia de Lange, 2020. "ATRX affects the repair of telomeric DSBs by promoting cohesion and a DAXX-dependent activity," PLOS Biology, Public Library of Science, vol. 18(1), pages 1-28, January.
    13. Chia-Yu Guh & Hong-Jhih Shen & Liv WeiChien Chen & Pei-Chen Chiu & I-Hsin Liao & Chen-Chia Lo & Yunfei Chen & Yu-Hung Hsieh & Ting-Chia Chang & Chien-Ping Yen & Yi-Yun Chen & Tom Wei-Wu Chen & Liuh-Yo, 2022. "XPF activates break-induced telomere synthesis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. S. Cohen & A. Guenolé & I. Lazar & A. Marnef & T. Clouaire & D. V. Vernekar & N. Puget & V. Rocher & C. Arnould & M. Aguirrebengoa & M. Genais & N. Firmin & R. A. Shamanna & R. Mourad & V. A. Bohr & V, 2022. "A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Pietro Fontana & Sara C. Buch-Larsen & Osamu Suyari & Rebecca Smith & Marcin J. Suskiewicz & Kira Schützenhofer & Antonio Ariza & Johannes Gregor Matthias Rack & Michael L. Nielsen & Ivan Ahel, 2023. "Serine ADP-ribosylation in Drosophila provides insights into the evolution of reversible ADP-ribosylation signalling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    18. Frances Karla Kusuma & Aishvaryaa Prabhu & Galen Tieo & Syed Moiz Ahmed & Pushkar Dakle & Wai Khang Yong & Elina Pathak & Vikas Madan & Yan Yi Jiang & Wai Leong Tam & Dennis Kappei & Peter Dröge & H. , 2023. "Signalling inhibition by ponatinib disrupts productive alternative lengthening of telomeres (ALT)," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    20. Youngho Kwon & Heike Rösner & Weixing Zhao & Platon Selemenakis & Zhuoling He & Ajinkya S. Kawale & Jeffrey N. Katz & Cody M. Rogers & Francisco E. Neal & Aida Badamchi Shabestari & Valdemaras Petrosi, 2023. "DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40071-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.