IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32583-8.html
   My bibliography  Save this article

A multi-functional role for the MCM8/9 helicase complex in maintaining fork integrity during replication stress

Author

Listed:
  • Wezley C. Griffin

    (Baylor University
    St. Jude Children’s Research Hospital)

  • David R. McKinzey

    (Baylor University)

  • Kathleen N. Klinzing

    (Baylor University)

  • Rithvik Baratam

    (Baylor University)

  • Achini Eliyapura

    (Baylor University)

  • Michael A. Trakselis

    (Baylor University)

Abstract

The minichromosome maintenance (MCM) 8/9 helicase is a AAA+ complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, a precise cellular role for MCM8/9 has remained elusive. We have interrogated the DNA synthesis ability and replication fork stability in cells lacking MCM8 or 9 and find that there is a functional partitioning of MCM8/9 activity between promoting replication fork progression and protecting persistently stalled forks. The helicase function of MCM8/9 aids in normal replication fork progression, but upon persistent stalling, MCM8/9 directs additional downstream stabilizers, including BRCA1 and Rad51, to protect forks from excessive degradation. Loss of MCM8 or 9 slows the overall replication rate and allows for excessive nascent strand degradation, detectable by increased markers of genomic damage. This evidence defines multifunctional roles for MCM8/9 in promoting normal replication fork progression and genome integrity following stress.

Suggested Citation

  • Wezley C. Griffin & David R. McKinzey & Kathleen N. Klinzing & Rithvik Baratam & Achini Eliyapura & Michael A. Trakselis, 2022. "A multi-functional role for the MCM8/9 helicase complex in maintaining fork integrity during replication stress," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32583-8
    DOI: 10.1038/s41467-022-32583-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32583-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32583-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sofija Mijic & Ralph Zellweger & Nagaraja Chappidi & Matteo Berti & Kurt Jacobs & Karun Mutreja & Sebastian Ursich & Arnab Ray Chaudhuri & Andre Nussenzweig & Pavel Janscak & Massimo Lopes, 2017. "Replication fork reversal triggers fork degradation in BRCA2-defective cells," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    2. Xianning Lai & Ronan Broderick & Valérie Bergoglio & Jutta Zimmer & Sophie Badie & Wojciech Niedzwiedz & Jean-Sébastien Hoffmann & Madalena Tarsounas, 2017. "Correction: Corrigendum: MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells," Nature Communications, Nature, vol. 8(1), pages 1-3, December.
    3. Kyung Yong Lee & Jun-Sub Im & Etsuko Shibata & Jonghoon Park & Naofumi Handa & Stephen C. Kowalczykowski & Anindya Dutta, 2015. "MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    4. Xianning Lai & Ronan Broderick & Valérie Bergoglio & Jutta Zimmer & Sophie Badie & Wojciech Niedzwiedz & Jean-Sébastien Hoffmann & Madalena Tarsounas, 2017. "MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frederick Richards & Marta J. Llorca-Cardenosa & Jamie Langton & Sara C. Buch-Larsen & Noor F. Shamkhi & Abhishek Bharadwaj Sharma & Michael L. Nielsen & Nicholas D. Lakin, 2023. "Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Domagoj Vugic & Isaac Dumoulin & Charlotte Martin & Anna Minello & Lucia Alvaro-Aranda & Jesus Gomez-Escudero & Rady Chaaban & Rana Lebdy & Catharina Nicolai & Virginie Boucherit & Cyril Ribeyre & Ang, 2023. "Replication gap suppression depends on the double-strand DNA binding activity of BRCA2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    4. Youngho Kwon & Heike Rösner & Weixing Zhao & Platon Selemenakis & Zhuoling He & Ajinkya S. Kawale & Jeffrey N. Katz & Cody M. Rogers & Francisco E. Neal & Aida Badamchi Shabestari & Valdemaras Petrosi, 2023. "DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Anastasia Hale & Ashna Dhoonmoon & Joshua Straka & Claudia M. Nicolae & George-Lucian Moldovan, 2023. "Multi-step processing of replication stress-derived nascent strand DNA gaps by MRE11 and EXO1 nucleases," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. George E. Ronson & Katarzyna Starowicz & Elizabeth J. Anthony & Ann Liza Piberger & Lucy C. Clarke & Alexander J. Garvin & Andrew D. Beggs & Celina M. Whalley & Matthew J. Edmonds & James F. J. Beesle, 2023. "Mechanisms of synthetic lethality between BRCA1/2 and 53BP1 deficiencies and DNA polymerase theta targeting," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. BaDoi N. Phan & Madelyn H. Ray & Xiangning Xue & Chen Fu & Robert J. Fenster & Stephen J. Kohut & Jack Bergman & Suzanne N. Haber & Kenneth M. McCullough & Madeline K. Fish & Jill R. Glausier & Qiao S, 2024. "Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Zhihua Kang & Pan Fu & Allen L. Alcivar & Haiqing Fu & Christophe Redon & Tzeh Keong Foo & Yamei Zuo & Caiyong Ye & Ryan Baxley & Advaitha Madireddy & Remi Buisson & Anja-Katrin Bielinsky & Lee Zou & , 2021. "BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Cuige Zhu & Mari Iwase & Ziqian Li & Faliang Wang & Annabel Quinet & Alessandro Vindigni & Jieya Shao, 2022. "Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Junliang Chen & Mingjie Wu & Yulan Yang & Chunyan Ruan & Yi Luo & Lizhi Song & Ting Wu & Jun Huang & Bing Yang & Ting Liu, 2024. "TFIP11 promotes replication fork reversal to preserve genome stability," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Ramona N. Moro & Uddipta Biswas & Suhas S. Kharat & Filip D. Duzanic & Prosun Das & Maria Stavrou & Maria C. Raso & Raimundo Freire & Arnab Ray Chaudhuri & Shyam K. Sharan & Lorenza Penengo, 2023. "Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Ashna Dhoonmoon & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Ananya Acharya & Hélène Bret & Jen-Wei Huang & Martin Mütze & Martin Göse & Vera Maria Kissling & Ralf Seidel & Alberto Ciccia & Raphaël Guérois & Petr Cejka, 2024. "Mechanism of DNA unwinding by MCM8-9 in complex with HROB," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Martin Andrs & Henriette Stoy & Barbora Boleslavska & Nagaraja Chappidi & Radhakrishnan Kanagaraj & Zuzana Nascakova & Shruti Menon & Satyajeet Rao & Anna Oravetzova & Jana Dobrovolna & Kalpana Surend, 2023. "Excessive reactive oxygen species induce transcription-dependent replication stress," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Zu Ye & Shengfeng Xu & Yin Shi & Xueqian Cheng & Yuan Zhang & Sunetra Roy & Sarita Namjoshi & Michael A. Longo & Todd M. Link & Katharina Schlacher & Guang Peng & Dihua Yu & Bin Wang & John A. Tainer , 2024. "GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Tanay Thakar & Ashna Dhoonmoon & Joshua Straka & Emily M. Schleicher & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Rishi Kumar Jaiswal & Kai-Hang Lei & Megan Chastain & Yuan Wang & Olga Shiva & Shan Li & Zhongsheng You & Peter Chi & Weihang Chai, 2023. "CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32583-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.