IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39982-5.html
   My bibliography  Save this article

Genome-scale metabolic modeling of Aspergillus fumigatus strains reveals growth dependencies on the lung microbiome

Author

Listed:
  • Mohammad H. Mirhakkak

    (Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI))

  • Xiuqiang Chen

    (Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI))

  • Yueqiong Ni

    (Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI))

  • Thorsten Heinekamp

    (Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI))

  • Tongta Sae-Ong

    (Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI))

  • Lin-Lin Xu

    (Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI))

  • Oliver Kurzai

    (University of Würzburg
    Research Group Fungal Septomics, Leibniz Institute of Natural Product Research and Infection Biology (Leibniz-HKI)
    National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute of Natural Product Research and Infection Biology (Leibniz-HKI))

  • Amelia E. Barber

    (Friedrich-Schiller-University Jena)

  • Axel A. Brakhage

    (Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI)
    Friedrich Schiller University Jena)

  • Sebastien Boutin

    (University of Lübeck
    University of Heidelberg)

  • Sascha Schäuble

    (Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI))

  • Gianni Panagiotou

    (Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI)
    University of Hong Kong
    Friedrich Schiller University, Faculty of Biological Sciences)

Abstract

Aspergillus fumigatus, an opportunistic human pathogen, frequently infects the lungs of people with cystic fibrosis and is one of the most common causes of infectious-disease death in immunocompromised patients. Here, we construct 252 strain-specific, genome-scale metabolic models of this important fungal pathogen to study and better understand the metabolic component of its pathogenic versatility. The models show that 23.1% of A. fumigatus metabolic reactions are not conserved across strains and are mainly associated with amino acid, nucleotide, and nitrogen metabolism. Profiles of non-conserved reactions and growth-supporting reaction fluxes are sufficient to differentiate strains, for example by environmental or clinical origin. In addition, shotgun metagenomics analysis of sputum from 40 cystic fibrosis patients (15 females, 25 males) before and after diagnosis with an A. fumigatus colonization suggests that the fungus shapes the lung microbiome towards a more beneficial fungal growth environment associated with aromatic amino acid availability and the shikimate pathway. Our findings are starting points for the development of drugs or microbiome intervention strategies targeting fungal metabolic needs for survival and colonization in the non-native environment of the human lung.

Suggested Citation

  • Mohammad H. Mirhakkak & Xiuqiang Chen & Yueqiong Ni & Thorsten Heinekamp & Tongta Sae-Ong & Lin-Lin Xu & Oliver Kurzai & Amelia E. Barber & Axel A. Brakhage & Sebastien Boutin & Sascha Schäuble & Gian, 2023. "Genome-scale metabolic modeling of Aspergillus fumigatus strains reveals growth dependencies on the lung microbiome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39982-5
    DOI: 10.1038/s41467-023-39982-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39982-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39982-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew C. Fisher & Daniel. A. Henk & Cheryl J. Briggs & John S. Brownstein & Lawrence C. Madoff & Sarah L. McCraw & Sarah J. Gurr, 2012. "Emerging fungal threats to animal, plant and ecosystem health," Nature, Nature, vol. 484(7393), pages 186-194, April.
    2. Can Chen & Chen Liao & Yang-Yu Liu, 2023. "Teasing out missing reactions in genome-scale metabolic networks through hypergraph learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Nikos Vlassis & Maria Pires Pacheco & Thomas Sauter, 2014. "Fast Reconstruction of Compact Context-Specific Metabolic Network Models," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-10, January.
    4. Hongzhong Lu & Feiran Li & Benjamín J. Sánchez & Zhengming Zhu & Gang Li & Iván Domenzain & Simonas Marcišauskas & Petre Mihail Anton & Dimitra Lappa & Christian Lieven & Moritz Emanuel Beber & Nikola, 2019. "A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    5. Brandon Brooks & Matthew R. Olm & Brian A. Firek & Robyn Baker & Brian C. Thomas & Michael J. Morowitz & Jillian F. Banfield, 2017. "Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    6. Yara Seif & Erol Kavvas & Jean-Christophe Lachance & James T. Yurkovich & Sean-Paul Nuccio & Xin Fang & Edward Catoiu & Manuela Raffatellu & Bernhard O. Palsson & Jonathan M. Monk, 2018. "Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Jansen & Tanda Qi & Vito Latora & Grigoris D. Amoutzias & Daniela Delneri & Stephen G. Oliver & Giuseppe Nicosia, 2024. "Minimisation of metabolic networks defines a new functional class of genes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Li Zhang & Karen R. Jonscher & Zuyuan Zhang & Yi Xiong & Ryan S. Mueller & Jacob E. Friedman & Chongle Pan, 2022. "Islet autoantibody seroconversion in type-1 diabetes is associated with metagenome-assembled genomes in infant gut microbiomes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. P. J. Zarco-Tejada & T. Poblete & C. Camino & V. Gonzalez-Dugo & R. Calderon & A. Hornero & R. Hernandez-Clemente & M. Román-Écija & M. P. Velasco-Amo & B. B. Landa & P. S. A. Beck & M. Saponari & D. , 2021. "Divergent abiotic spectral pathways unravel pathogen stress signals across species," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. André Schultz & Amina A Qutub, 2016. "Reconstruction of Tissue-Specific Metabolic Networks Using CORDA," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-33, March.
    6. Roland A. Knapp & Mark Q. Wilber & Maxwell B. Joseph & Thomas C. Smith & Robert L. Grasso, 2024. "Reintroduction of resistant frogs facilitates landscape-scale recovery in the presence of a lethal fungal disease," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. K. Viswanath & P. Sinha & S. Naresh Kumar & Taru Sharma & Shalini Saxena & Shweta Panjwani & H. Pathak & Shalu Mishra Shukla, 2017. "Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario," Climatic Change, Springer, vol. 142(1), pages 155-167, May.
    8. Hulda S Haraldsdóttir & Ronan M T Fleming, 2016. "Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-30, November.
    9. Huimin Ye & Sabrina Borusak & Claudia Eberl & Julia Krasenbrink & Anna S. Weiss & Song-Can Chen & Buck T. Hanson & Bela Hausmann & Craig W. Herbold & Manuel Pristner & Benjamin Zwirzitz & Benedikt War, 2023. "Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Miles Parker & Andrew Acland & Harry J Armstrong & Jim R Bellingham & Jessica Bland & Helen C Bodmer & Simon Burall & Sarah Castell & Jason Chilvers & David D Cleevely & David Cope & Lucia Costanzo & , 2014. "Identifying the Science and Technology Dimensions of Emerging Public Policy Issues through Horizon Scanning," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-17, May.
    11. J. Junk & L. Kouadio & P. Delfosse & M. Jarroudi, 2016. "Effects of regional climate change on brown rust disease in winter wheat," Climatic Change, Springer, vol. 135(3), pages 439-451, April.
    12. Valentina del Olmo & Verónica Mixão & Rashmi Fotedar & Ester Saus & Amina Al Malki & Ewa Księżopolska & Juan Carlos Nunez-Rodriguez & Teun Boekhout & Toni Gabaldón, 2023. "Origin of fungal hybrids with pathogenic potential from warm seawater environments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Marius Arend & David Zimmer & Rudan Xu & Frederik Sommer & Timo Mühlhaus & Zoran Nikoloski, 2023. "Proteomics and constraint-based modelling reveal enzyme kinetic properties of Chlamydomonas reinhardtii on a genome scale," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Junnan Xiong & Wei Li & Hao Zhang & Weiming Cheng & Chongchong Ye & Yunliang Zhao, 2019. "Selected Environmental Assessment Model and Spatial Analysis Method to Explain Correlations in Environmental and Socio-Economic Data with Possible Application for Explaining the State of the Ecosystem," Sustainability, MDPI, vol. 11(17), pages 1-26, September.
    15. Moira Kelly & Frank Pasmans & Jose F. Muñoz & Terrance P. Shea & Salvador Carranza & Christina A. Cuomo & An Martel, 2021. "Diversity, multifaceted evolution, and facultative saprotrophism in the European Batrachochytrium salamandrivorans epidemic," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    16. Yameng Xu & Xinglong Wang & Chenyang Zhang & Xuan Zhou & Xianhao Xu & Luyao Han & Xueqin Lv & Yanfeng Liu & Song Liu & Jianghua Li & Guocheng Du & Jian Chen & Rodrigo Ledesma-Amaro & Long Liu, 2022. "De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Cazelles, K. & Otten, W. & Baveye, P.C. & Falconer, R.E., 2013. "Soil fungal dynamics: Parameterisation and sensitivity analysis of modelled physiological processes, soil architecture and carbon distribution," Ecological Modelling, Elsevier, vol. 248(C), pages 165-173.
    18. John M Mola & J Morgan Varner & Erik S Jules & Tova Spector, 2014. "Altered Community Flammability in Florida’s Apalachicola Ravines and Implications for the Persistence of the Endangered Conifer Torreya taxifolia," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-8, August.
    19. Ting Zhang & Qingdong Zeng & Fan Ji & Honghong Wu & Rodrigo Ledesma-Amaro & Qingshan Wei & Hao Yang & Xuhan Xia & Yao Ren & Keqing Mu & Qiang He & Zhensheng Kang & Ruijie Deng, 2023. "Precise in-field molecular diagnostics of crop diseases by smartphone-based mutation-resolved pathogenic RNA analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Martin Schuster & Sreedhar Kilaru & Gero Steinberg, 2024. "Azoles activate type I and type II programmed cell death pathways in crop pathogenic fungi," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39982-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.