IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v320y2016icp158-169.html
   My bibliography  Save this article

A model for the interaction of frog population dynamics with Batrachochytrium dendrobatidis, Janthinobacterium lividum and temperature and its implication for chytridiomycosis management

Author

Listed:
  • Ackleh, Azmy S.
  • Carter, Jacoby
  • Chellamuthu, Vinodh K.
  • Ma, Baoling

Abstract

Chytridiomycosis is an emerging disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) that poses a serious threat to frog populations worldwide. Several studies have shown that inoculation of bacterial species Janthinobacterium lividum (Jl) can mitigate the impact of the disease. However, there are many questions regarding this interaction. A mathematical model of a frog population infected with chytridiomycosis is developed to investigate how the inoculation of Jl could reduce the impact of Bd disease on frogs. The model also illustrates the important role of temperature in disease dynamics. The model simulation results suggest possible control strategies for Jl to limit the impact of Bd in various scenarios. However, a better knowledge of Jl life cycle is needed to fully understand the interaction of Jl, Bd, temperature and frogs.

Suggested Citation

  • Ackleh, Azmy S. & Carter, Jacoby & Chellamuthu, Vinodh K. & Ma, Baoling, 2016. "A model for the interaction of frog population dynamics with Batrachochytrium dendrobatidis, Janthinobacterium lividum and temperature and its implication for chytridiomycosis management," Ecological Modelling, Elsevier, vol. 320(C), pages 158-169.
  • Handle: RePEc:eee:ecomod:v:320:y:2016:i:c:p:158-169
    DOI: 10.1016/j.ecolmodel.2015.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015004378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew C. Fisher & Daniel. A. Henk & Cheryl J. Briggs & John S. Brownstein & Lawrence C. Madoff & Sarah L. McCraw & Sarah J. Gurr, 2012. "Emerging fungal threats to animal, plant and ecosystem health," Nature, Nature, vol. 484(7393), pages 186-194, April.
    2. Thomas R. Raffel & John M. Romansic & Neal T. Halstead & Taegan A. McMahon & Matthew D. Venesky & Jason R. Rohr, 2013. "Disease and thermal acclimation in a more variable and unpredictable climate," Nature Climate Change, Nature, vol. 3(2), pages 146-151, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. J. Zarco-Tejada & T. Poblete & C. Camino & V. Gonzalez-Dugo & R. Calderon & A. Hornero & R. Hernandez-Clemente & M. Román-Écija & M. P. Velasco-Amo & B. B. Landa & P. S. A. Beck & M. Saponari & D. , 2021. "Divergent abiotic spectral pathways unravel pathogen stress signals across species," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Yu Hao & Yujia Li & Zhiyang Shen, 2023. "Does carbon emission trading contribute to reducing infectious diseases? Evidence from China," Growth and Change, Wiley Blackwell, vol. 54(1), pages 74-100, March.
    3. K. Viswanath & P. Sinha & S. Naresh Kumar & Taru Sharma & Shalini Saxena & Shweta Panjwani & H. Pathak & Shalu Mishra Shukla, 2017. "Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario," Climatic Change, Springer, vol. 142(1), pages 155-167, May.
    4. Valentina del Olmo & Verónica Mixão & Rashmi Fotedar & Ester Saus & Amina Al Malki & Ewa Księżopolska & Juan Carlos Nunez-Rodriguez & Teun Boekhout & Toni Gabaldón, 2023. "Origin of fungal hybrids with pathogenic potential from warm seawater environments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. John M Mola & J Morgan Varner & Erik S Jules & Tova Spector, 2014. "Altered Community Flammability in Florida’s Apalachicola Ravines and Implications for the Persistence of the Endangered Conifer Torreya taxifolia," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-8, August.
    6. Theodora Ijeoma Ekwomadu & Mulunda Mwanza, 2023. "Fusarium Fungi Pathogens, Identification, Adverse Effects, Disease Management, and Global Food Security: A Review of the Latest Research," Agriculture, MDPI, vol. 13(9), pages 1-20, September.
    7. Shengzi Chen & Zhongfa Zhou & Lihui Yan & Bo Li, 2016. "Quantitative Evaluation of Ecosystem Health in a Karst Area of South China," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
    8. Xiuling Chen & Haifeng Huang & Shumei Zhang & Yao Zhang & Jingbin Jiang & Youwen Qiu & Jiayin Liu & Aoxue Wang, 2021. "Bacillus velezensis WZ-37, a New Broad-Spectrum Biocontrol Strain, Promotes the Growth of Tomato Seedlings," Agriculture, MDPI, vol. 11(7), pages 1-14, June.
    9. Bob E. H. van Oort & Grete K. Hovelsrud & Camilla Risvoll & Christian W. Mohr & Solveig Jore, 2020. "A Mini-Review of Ixodes Ticks Climate Sensitive Infection Dispersion Risk in the Nordic Region," IJERPH, MDPI, vol. 17(15), pages 1-15, July.
    10. Romain Espinosa & Damian Tago & Nicolas Treich, 2020. "Infectious Diseases and Meat Production," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1019-1044, August.
    11. Mottaleb, Khondoker & Hodson, David, 2021. "Assessing Wheat Blast Induced Economic Loss in Bangladesh: A Natural Experiment," 2021 Conference, August 17-31, 2021, Virtual 315870, International Association of Agricultural Economists.
    12. Miles Parker & Andrew Acland & Harry J Armstrong & Jim R Bellingham & Jessica Bland & Helen C Bodmer & Simon Burall & Sarah Castell & Jason Chilvers & David D Cleevely & David Cope & Lucia Costanzo & , 2014. "Identifying the Science and Technology Dimensions of Emerging Public Policy Issues through Horizon Scanning," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-17, May.
    13. J. Junk & L. Kouadio & P. Delfosse & M. Jarroudi, 2016. "Effects of regional climate change on brown rust disease in winter wheat," Climatic Change, Springer, vol. 135(3), pages 439-451, April.
    14. Junnan Xiong & Wei Li & Hao Zhang & Weiming Cheng & Chongchong Ye & Yunliang Zhao, 2019. "Selected Environmental Assessment Model and Spatial Analysis Method to Explain Correlations in Environmental and Socio-Economic Data with Possible Application for Explaining the State of the Ecosystem," Sustainability, MDPI, vol. 11(17), pages 1-26, September.
    15. Moira Kelly & Frank Pasmans & Jose F. Muñoz & Terrance P. Shea & Salvador Carranza & Christina A. Cuomo & An Martel, 2021. "Diversity, multifaceted evolution, and facultative saprotrophism in the European Batrachochytrium salamandrivorans epidemic," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    16. Cazelles, K. & Otten, W. & Baveye, P.C. & Falconer, R.E., 2013. "Soil fungal dynamics: Parameterisation and sensitivity analysis of modelled physiological processes, soil architecture and carbon distribution," Ecological Modelling, Elsevier, vol. 248(C), pages 165-173.
    17. Ting Zhang & Qingdong Zeng & Fan Ji & Honghong Wu & Rodrigo Ledesma-Amaro & Qingshan Wei & Hao Yang & Xuhan Xia & Yao Ren & Keqing Mu & Qiang He & Zhensheng Kang & Ruijie Deng, 2023. "Precise in-field molecular diagnostics of crop diseases by smartphone-based mutation-resolved pathogenic RNA analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Yawen Zhang & Zhibiao Nan & Michael John Christensen & Xiaoping Xin & Nan Zhang, 2022. "Effects of Rust on Plant Growth and Stoichiometry of Leymus chinensis under Different Grazing Intensities in Hulunber Grassland," Agriculture, MDPI, vol. 12(7), pages 1-15, July.
    19. Yong-Ju Huang & Georgia K Mitrousia & Siti Nordahliawate M Sidique & Aiming Qi & Bruce D L Fitt, 2018. "Combining R gene and quantitative resistance increases effectiveness of cultivar resistance against Leptosphaeria maculans in Brassica napus in different environments," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-22, May.
    20. Chen, Quan & Zhao, Qian & Chen, Pimao & Lu, Hongfang, 2018. "Effect of exotic cordgrass Spartina alterniflora on the eco-exergy based thermodynamic health of the macrobenthic faunal community in mangrove wetlands," Ecological Modelling, Elsevier, vol. 385(C), pages 106-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:320:y:2016:i:c:p:158-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.