IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39964-7.html
   My bibliography  Save this article

Insertion sequence transposition inactivates CRISPR-Cas immunity

Author

Listed:
  • Yong Sheng

    (Shanghai Jiao Tong University)

  • Hengyu Wang

    (Shanghai Jiao Tong University)

  • Yixin Ou

    (Shanghai Jiao Tong University
    Haihe Laboratory of Synthetic Biology)

  • Yingying Wu

    (Shanghai Jiao Tong University
    Shanghai Academy of Agricultural Sciences)

  • Wei Ding

    (Shanghai Jiao Tong University)

  • Meifeng Tao

    (Shanghai Jiao Tong University
    Haihe Laboratory of Synthetic Biology)

  • Shuangjun Lin

    (Shanghai Jiao Tong University
    Haihe Laboratory of Synthetic Biology)

  • Zixin Deng

    (Shanghai Jiao Tong University
    Haihe Laboratory of Synthetic Biology)

  • Linquan Bai

    (Shanghai Jiao Tong University)

  • Qianjin Kang

    (Shanghai Jiao Tong University
    Haihe Laboratory of Synthetic Biology)

Abstract

CRISPR-Cas immunity systems safeguard prokaryotic genomes by inhibiting the invasion of mobile genetic elements. Here, we screened prokaryotic genomic sequences and identified multiple natural transpositions of insertion sequences (ISs) into cas genes, thus inactivating CRISPR-Cas defenses. We then generated an IS-trapping system, using Escherichia coli strains with various ISs and an inducible cas nuclease, to monitor IS insertions into cas genes following the induction of double-strand DNA breakage as a physiological host stress. We identified multiple events mediated by different ISs, especially IS1 and IS10, displaying substantial relaxed target specificity. IS transposition into cas was maintained in the presence of DNA repair machinery, and transposition into other host defense systems was also detected. Our findings highlight the potential of ISs to counter CRISPR activity, thus increasing bacterial susceptibility to foreign DNA invasion.

Suggested Citation

  • Yong Sheng & Hengyu Wang & Yixin Ou & Yingying Wu & Wei Ding & Meifeng Tao & Shuangjun Lin & Zixin Deng & Linquan Bai & Qianjin Kang, 2023. "Insertion sequence transposition inactivates CRISPR-Cas immunity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39964-7
    DOI: 10.1038/s41467-023-39964-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39964-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39964-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florian Tesson & Alexandre Hervé & Ernest Mordret & Marie Touchon & Camille d’Humières & Jean Cury & Aude Bernheim, 2022. "Systematic and quantitative view of the antiviral arsenal of prokaryotes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jessika Consuegra & Joël Gaffé & Richard E. Lenski & Thomas Hindré & Jeffrey E. Barrick & Olivier Tenaillon & Dominique Schneider, 2021. "Insertion-sequence-mediated mutations both promote and constrain evolvability during a long-term experiment with bacteria," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitri Boeckaerts & Michiel Stock & Celia Ferriol-González & Jesús Oteo-Iglesias & Rafael Sanjuán & Pilar Domingo-Calap & Bernard Baets & Yves Briers, 2024. "Prediction of Klebsiella phage-host specificity at the strain level," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Rubén Barcia-Cruz & David Goudenège & Jorge A. Moura de Sousa & Damien Piel & Martial Marbouty & Eduardo P. C. Rocha & Frédérique Roux, 2024. "Phage-inducible chromosomal minimalist islands (PICMIs), a novel family of small marine satellites of virulent phages," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Danielle Miller & Adi Stern & David Burstein, 2022. "Deciphering microbial gene function using natural language processing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Pedro Leão & Mary E. Little & Kathryn E. Appler & Daphne Sahaya & Emily Aguilar-Pine & Kathryn Currie & Ilya J. Finkelstein & Valerie Anda & Brett J. Baker, 2024. "Asgard archaea defense systems and their roles in the origin of eukaryotic immunity," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Lingchen He & Laura Miguel-Romero & Jonasz B. Patkowski & Nasser Alqurainy & Eduardo P. C. Rocha & Tiago R. D. Costa & Alfred Fillol-Salom & José R. Penadés, 2024. "Tail assembly interference is a common strategy in bacterial antiviral defenses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Tom J. Arrowsmith & Xibing Xu & Shangze Xu & Ben Usher & Peter Stokes & Megan Guest & Agnieszka K. Bronowska & Pierre Genevaux & Tim R. Blower, 2024. "Inducible auto-phosphorylation regulates a widespread family of nucleotidyltransferase toxins," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Carolien Bastiaanssen & Pilar Bobadilla Ugarte & Kijun Kim & Giada Finocchio & Yanlei Feng & Todd A. Anzelon & Stephan Köstlbacher & Daniel Tamarit & Thijs J. G. Ettema & Martin Jinek & Ian J. MacRae , 2024. "RNA-guided RNA silencing by an Asgard archaeal Argonaute," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Angelina Beavogui & Auriane Lacroix & Nicolas Wiart & Julie Poulain & Tom O. Delmont & Lucas Paoli & Patrick Wincker & Pedro H. Oliveira, 2024. "The defensome of complex bacterial communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Shao-Ming Gao & Han-Lan Fei & Qi Li & Li-Ying Lan & Li-Nan Huang & Peng-Fei Fan, 2024. "Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Jan D. Brüwer & Chandni Sidhu & Yanlin Zhao & Andreas Eich & Leonard Rößler & Luis H. Orellana & Bernhard M. Fuchs, 2024. "Globally occurring pelagiphage infections create ribosome-deprived cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Motaher Hossain & Barbaros Aslan & Asma Hatoum-Aslan, 2024. "Tandem mobilization of anti-phage defenses alongside SCCmec elements in staphylococci," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Matthieu Haudiquet & Julie Bris & Amandine Nucci & Rémy A. Bonnin & Pilar Domingo-Calap & Eduardo P. C. Rocha & Olaya Rendueles, 2024. "Capsules and their traits shape phage susceptibility and plasmid conjugation efficiency," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Bogna J. Smug & Krzysztof Szczepaniak & Eduardo P. C. Rocha & Stanislaw Dunin-Horkawicz & Rafał J. Mostowy, 2023. "Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Eugen Pfeifer & Eduardo P. C. Rocha, 2024. "Phage-plasmids promote recombination and emergence of phages and plasmids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Natalia Quinones-Olvera & Siân V. Owen & Lucy M. McCully & Maximillian G. Marin & Eleanor A. Rand & Alice C. Fan & Oluremi J. Martins Dosumu & Kay Paul & Cleotilde E. Sanchez Castaño & Rachel Petherbr, 2024. "Diverse and abundant phages exploit conjugative plasmids," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39964-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.