IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39810-w.html
   My bibliography  Save this article

Warning of a forthcoming collapse of the Atlantic meridional overturning circulation

Author

Listed:
  • Peter Ditlevsen

    (Niels Bohr Institute, University of Copenhagen)

  • Susanne Ditlevsen

    (Institute of Mathematical Sciences, University of Copenhagen)

Abstract

The Atlantic meridional overturning circulation (AMOC) is a major tipping element in the climate system and a future collapse would have severe impacts on the climate in the North Atlantic region. In recent years weakening in circulation has been reported, but assessments by the Intergovernmental Panel on Climate Change (IPCC), based on the Climate Model Intercomparison Project (CMIP) model simulations suggest that a full collapse is unlikely within the 21st century. Tipping to an undesired state in the climate is, however, a growing concern with increasing greenhouse gas concentrations. Predictions based on observations rely on detecting early-warning signals, primarily an increase in variance (loss of resilience) and increased autocorrelation (critical slowing down), which have recently been reported for the AMOC. Here we provide statistical significance and data-driven estimators for the time of tipping. We estimate a collapse of the AMOC to occur around mid-century under the current scenario of future emissions.

Suggested Citation

  • Peter Ditlevsen & Susanne Ditlevsen, 2023. "Warning of a forthcoming collapse of the Atlantic meridional overturning circulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39810-w
    DOI: 10.1038/s41467-023-39810-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39810-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39810-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrey Ganopolski & Stefan Rahmstorf, 2001. "Rapid changes of glacial climate simulated in a coupled climate model," Nature, Nature, vol. 409(6817), pages 153-158, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models," Energy Economics, Elsevier, vol. 134(C).
    2. R.Boucekkine & W.Ruan & B.Zou, 2024. "Optimal behavior under pollution irreversibility risk and distance to the irreversibility thresholds: A global approach," LIDAM Discussion Papers IRES 2024001, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    3. Éric Vansteenberghe, 2024. "Insurance Supervision under Climate Change: A Pioneers Detection Method [La supervision des assurances lorsque le climat est bouleversé : une Méthode de Détection des Pionniers]," Débats économiques et financiers 43, Banque de France.
    4. Raoul Boucekkine & Weiha Ruan & Benteng Zou, 2023. "Optimal behavior under pollution irreversibility risk and distance to the irreversibility thresholds: A global approach," DEM Discussion Paper Series 23-16, Department of Economics at the University of Luxembourg.
    5. Elías Albagli & Pablo García Silva & Gonzalo García-Trujillo & María Antonia Yung, 2024. "Through Drought and Flood: the past, present and future of Climate Migration," Working Papers Central Bank of Chile 1019, Central Bank of Chile.
    6. Florian Diekert & Daniel Heyen & Frikk Nesje & Soheil Shayegh, 2024. "Balancing the Risk of Tipping: Early Warning Systems from Detection to Management," CESifo Working Paper Series 10892, CESifo.
    7. B. Cooper Boniece & Lajos Horv'ath & Lorenzo Trapani, 2023. "On changepoint detection in functional data using empirical energy distance," Papers 2310.04853, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megan Ceronsky & David Anthoff & Cameron Hepburn & Richard S.J. Tol, 2005. "Checking The Price Tag On Catastrophe: The Social Cost Of Carbon Under Non-Linear Climate Response," Working Papers FNU-87, Research unit Sustainability and Global Change, Hamburg University, revised Aug 2005.
    2. Shivangini Singh & Shashi Kumar & Navneet Kumar, 2023. "Evolution of Iceberg A68 since Its Inception from the Collapse of Antarctica’s Larsen C Ice Shelf Using Sentinel-1 SAR Data," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    3. F. Held & H. Cheng & R. L. Edwards & O. Tüysüz & K. Koç & D. Fleitmann, 2024. "Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Hall, Darwin C. & Behl, Richard J., 2006. "Integrating economic analysis and the science of climate instability," Ecological Economics, Elsevier, vol. 57(3), pages 442-465, May.
    5. Maya Ben-Yami & Vanessa Skiba & Sebastian Bathiany & Niklas Boers, 2023. "Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Anders Levermann & Jonathan Bamber & Sybren Drijfhout & Andrey Ganopolski & Winfried Haeberli & Neil Harris & Matthias Huss & Kirstin Krüger & Timothy Lenton & Ronald Lindsay & Dirk Notz & Peter Wadha, 2012. "Potential climatic transitions with profound impact on Europe," Climatic Change, Springer, vol. 110(3), pages 845-878, February.
    7. Tao Li & Laura F. Robinson & Graeme A. MacGilchrist & Tianyu Chen & Joseph A. Stewart & Andrea Burke & Maoyu Wang & Gaojun Li & Jun Chen & James W. B. Rae, 2023. "Enhanced subglacial discharge from Antarctica during meltwater pulse 1A," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39810-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.