IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39571-6.html
   My bibliography  Save this article

Targeting of SLC25A22 boosts the immunotherapeutic response in KRAS-mutant colorectal cancer

Author

Listed:
  • Qiming Zhou

    (The Chinese University of Hong Kong)

  • Yao Peng

    (The Chinese University of Hong Kong
    Shenzhen University General Hospital)

  • Fenfen Ji

    (The Chinese University of Hong Kong)

  • Huarong Chen

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong)

  • Wei Kang

    (The Chinese University of Hong Kong)

  • Lam-Shing Chan

    (The Chinese University of Hong Kong)

  • Hongyan Gou

    (The Chinese University of Hong Kong)

  • Yufeng Lin

    (The Chinese University of Hong Kong)

  • Pingmei Huang

    (The Chinese University of Hong Kong)

  • Danyu Chen

    (The Chinese University of Hong Kong)

  • Qinyao Wei

    (The Chinese University of Hong Kong)

  • Hao Su

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong)

  • Cong Liang

    (Xiamen University)

  • Xiang Zhang

    (The Chinese University of Hong Kong)

  • Jun Yu

    (The Chinese University of Hong Kong)

  • Chi Chun Wong

    (The Chinese University of Hong Kong)

Abstract

KRAS is an important tumor intrinsic factor driving immune suppression in colorectal cancer (CRC). In this study, we demonstrate that SLC25A22 underlies mutant KRAS-induced immune suppression in CRC. In immunocompetent male mice and humanized male mice models, SLC25A22 knockout inhibits KRAS-mutant CRC tumor growth with reduced myeloid derived suppressor cells (MDSC) but increased CD8+ T-cells, implying the reversion of mutant KRAS-driven immunosuppression. Mechanistically, we find that SLC25A22 plays a central role in promoting asparagine, which binds and activates SRC phosphorylation. Asparagine-mediated SRC promotes ERK/ETS2 signaling, which drives CXCL1 transcription. Secreted CXCL1 functions as a chemoattractant for MDSC via CXCR2, leading to an immunosuppressive microenvironment. Targeting SLC25A22 or asparagine impairs KRAS-induced MDSC infiltration in CRC. Finally, we demonstrate that the targeting of SLC25A22 in combination with anti-PD1 therapy synergizes to inhibit MDSC and activate CD8+ T cells to suppress KRAS-mutant CRC growth in vivo. We thus identify a metabolic pathway that drives immunosuppression in KRAS-mutant CRC.

Suggested Citation

  • Qiming Zhou & Yao Peng & Fenfen Ji & Huarong Chen & Wei Kang & Lam-Shing Chan & Hongyan Gou & Yufeng Lin & Pingmei Huang & Danyu Chen & Qinyao Wei & Hao Su & Cong Liang & Xiang Zhang & Jun Yu & Chi Ch, 2023. "Targeting of SLC25A22 boosts the immunotherapeutic response in KRAS-mutant colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39571-6
    DOI: 10.1038/s41467-023-39571-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39571-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39571-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mana Taki & Kaoru Abiko & Tsukasa Baba & Junzo Hamanishi & Ken Yamaguchi & Ryusuke Murakami & Koji Yamanoi & Naoki Horikawa & Yuko Hosoe & Eijiro Nakamura & Aiko Sugiyama & Masaki Mandai & Ikuo Konish, 2018. "Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Vincenzo Bronte & Sven Brandau & Shu-Hsia Chen & Mario P. Colombo & Alan B. Frey & Tim F. Greten & Susanna Mandruzzato & Peter J. Murray & Augusto Ochoa & Suzanne Ostrand-Rosenberg & Paulo C. Rodrigue, 2016. "Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    3. Abigail S. Krall & Shili Xu & Thomas G. Graeber & Daniel Braas & Heather R. Christofk, 2016. "Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    4. Jaekyoung Son & Costas A. Lyssiotis & Haoqiang Ying & Xiaoxu Wang & Sujun Hua & Matteo Ligorio & Rushika M. Perera & Cristina R. Ferrone & Edouard Mullarky & Ng Shyh-Chang & Ya’an Kang & Jason B. Flem, 2013. "Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway," Nature, Nature, vol. 496(7443), pages 101-105, April.
    5. Shaima’a Hamarsheh & Olaf Groß & Tilman Brummer & Robert Zeiser, 2020. "Immune modulatory effects of oncogenic KRAS in cancer," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Megan Young & Laurent Beziaud & Pierre Dessen & Angela Madurga Alonso & Albert Santamaria-Martínez & Joerg Huelsken, 2023. "Metabolic dependencies of metastasis-initiating cells in female breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Weili Ma & Maria Cecília Oliveira-Nunes & Ke Xu & Andrew Kossenkov & Benjamin C. Reiner & Richard C. Crist & James Hayden & Qing Chen, 2023. "Type I interferon response in astrocytes promotes brain metastasis by enhancing monocytic myeloid cell recruitment," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Mahmoud A. Bassal & Saumya E. Samaraweera & Kelly Lim & Brooks A. Benard & Sheree Bailey & Satinder Kaur & Paul Leo & John Toubia & Chloe Thompson-Peach & Tran Nguyen & Kyaw Ze Ya Maung & Debora A. Ca, 2022. "Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Peitao Zhang & Haixia Guan & Shukai Yuan & Huili Cheng & Jian Zheng & Zhenlei Zhang & Yifan Liu & Yang Yu & Zhaowei Meng & Xiangqian Zheng & Li Zhao, 2022. "Targeting myeloid derived suppressor cells reverts immune suppression and sensitizes BRAF-mutant papillary thyroid cancer to MAPK inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Saeed Daneshmandi & Jee Eun Choi & Qi Yan & Cameron R. MacDonald & Manu Pandey & Mounika Goruganthu & Nathan Roberts & Prashant K. Singh & Richard M. Higashi & Andrew N. Lane & Teresa W-M. Fan & Jianm, 2024. "Myeloid-derived suppressor cell mitochondrial fitness governs chemotherapeutic efficacy in hematologic malignancies," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Ni Li & Qiuli Liu & Ying Han & Siyu Pei & Bisheng Cheng & Junyu Xu & Xiang Miao & Qiang Pan & Hanling Wang & Jiacheng Guo & Xuege Wang & Guoying Zhang & Yannan Lian & Wei Zhang & Yi Zang & Minjia Tan , 2022. "ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Manuel Rodrigues & Giulia Vanoni & Pierre Loap & Coraline Dubot & Eleonora Timperi & Mathieu Minsat & Louis Bazire & Catherine Durdux & Virginie Fourchotte & Enora Laas & Nicolas Pouget & Zahra Castel, 2023. "Nivolumab plus chemoradiotherapy in locally-advanced cervical cancer: the NICOL phase 1 trial," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Rens Peeters & Jorge Cuenca-Escalona & Esther A. Zaal & Anna T. Hoekstra & Anouk C. G. Balvert & Marcos Vidal-Manrique & Niek Blomberg & Sjoerd J. Deventer & Rinke Stienstra & Julia Jellusova & Martin, 2022. "Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Silvia Tiberti & Carlotta Catozzi & Ottavio Croci & Mattia Ballerini & Danilo Cagnina & Chiara Soriani & Caterina Scirgolea & Zheng Gong & Jiatai He & Angeli D. Macandog & Amir Nabinejad & Carina B. N, 2022. "GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    10. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    11. Raquel S. Pereira & Rahul Kumar & Alessia Cais & Lara Paulini & Alisa Kahler & Jimena Bravo & Valentina R. Minciacchi & Theresa Krack & Eric Kowarz & Costanza Zanetti & Parimala Sonika Godavarthy & Fa, 2023. "Distinct and targetable role of calcium-sensing receptor in leukaemia," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Kimberley McGrail & Paula Granado-Martínez & Rosaura Esteve-Puig & Sara García-Ortega & Yuxin Ding & Sara Sánchez-Redondo & Berta Ferrer & Javier Hernandez-Losa & Francesc Canals & Anna Manzano & Aura, 2022. "BRAF activation by metabolic stress promotes glycolysis sensitizing NRASQ61-mutated melanomas to targeted therapy," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    13. Yanan Tang & Turun Song & Lu Gao & Saifu Yin & Ming Ma & Yun Tan & Lijuan Wu & Yang Yang & Yanqun Wang & Tao Lin & Feng Li, 2022. "A CRISPR-based ultrasensitive assay detects attomolar concentrations of SARS-CoV-2 antibodies in clinical samples," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Jing Wang & Ramon Ocadiz-Ruiz & Matthew S. Hall & Grace G. Bushnell & Sophia M. Orbach & Joseph T. Decker & Ravi M. Raghani & Yining Zhang & Aaron H. Morris & Jacqueline S. Jeruss & Lonnie D. Shea, 2023. "A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Taiqi Chen & Siyi Xie & Jie Cheng & Qiao Zhao & Hong Wu & Peng Jiang & Wenjing Du, 2024. "AKT1 phosphorylation of cytoplasmic ME2 induces a metabolic switch to glycolysis for tumorigenesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. J. K. Wiencke & Annette M. Molinaro & Gayathri Warrier & Terri Rice & Jennifer Clarke & Jennie W. Taylor & Margaret Wrensch & Helen Hansen & Lucie McCoy & Emily Tang & Stan J. Tamaki & Courtney M. Tam, 2022. "DNA methylation as a pharmacodynamic marker of glucocorticoid response and glioma survival," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Vipul Bhatia & Nikhil V. Kamat & Tiffany E. Pariva & Li-Ting Wu & Annabelle Tsao & Koichi Sasaki & Huiyun Sun & Gerardo Javier & Sam Nutt & Ilsa Coleman & Lauren Hitchcock & Ailin Zhang & Dmytro Rudoy, 2023. "Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    18. Vincenzo Salemme & Mauro Vedelago & Alessandro Sarcinella & Federico Moietta & Alessio Piccolantonio & Enrico Moiso & Giorgia Centonze & Marta Manco & Andrea Guala & Alessia Lamolinara & Costanza Ange, 2023. "p140Cap inhibits β-Catenin in the breast cancer stem cell compartment instructing a protective anti-tumor immune response," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39571-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.