IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39307-6.html
   My bibliography  Save this article

Cannabidiol inhibits Nav channels through two distinct binding sites

Author

Listed:
  • Jian Huang

    (Princeton University)

  • Xiao Fan

    (Princeton University)

  • Xueqin Jin

    (Tsinghua University)

  • Sooyeon Jo

    (Harvard Medical School)

  • Hanxiong Bear Zhang

    (Harvard Medical School)

  • Akie Fujita

    (Harvard Medical School)

  • Bruce P. Bean

    (Harvard Medical School)

  • Nieng Yan

    (Princeton University
    Tsinghua University)

Abstract

Cannabidiol (CBD), a major non-psychoactive phytocannabinoid in cannabis, is an effective treatment for some forms of epilepsy and pain. At high concentrations, CBD interacts with a huge variety of proteins, but which targets are most relevant for clinical actions is still unclear. Here we show that CBD interacts with Nav1.7 channels at sub-micromolar concentrations in a state-dependent manner. Electrophysiological experiments show that CBD binds to the inactivated state of Nav1.7 channels with a dissociation constant of about 50 nM. The cryo-EM structure of CBD bound to Nav1.7 channels reveals two distinct binding sites. One is in the IV-I fenestration near the upper pore. The other binding site is directly next to the inactivated “wedged” position of the Ile/Phe/Met (IFM) motif on the short linker between repeats III and IV, which mediates fast inactivation. Consistent with producing a direct stabilization of the inactivated state, mutating residues in this binding site greatly reduced state-dependent binding of CBD. The identification of this binding site may enable design of compounds with improved properties compared to CBD itself.

Suggested Citation

  • Jian Huang & Xiao Fan & Xueqin Jin & Sooyeon Jo & Hanxiong Bear Zhang & Akie Fujita & Bruce P. Bean & Nieng Yan, 2023. "Cannabidiol inhibits Nav channels through two distinct binding sites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39307-6
    DOI: 10.1038/s41467-023-39307-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39307-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39307-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiurong Wu & Jian Huang & Xiao Fan & Kan Wang & Xueqin Jin & Gaoxingyu Huang & Jiaao Li & Xiaojing Pan & Nieng Yan, 2023. "Structural mapping of Nav1.7 antagonists," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Jian Payandeh & Tamer M. Gamal El-Din & Todd Scheuer & Ning Zheng & William A. Catterall, 2012. "Crystal structure of a voltage-gated sodium channel in two potentially inactivated states," Nature, Nature, vol. 486(7401), pages 135-139, June.
    3. Jian Payandeh & Todd Scheuer & Ning Zheng & William A. Catterall, 2011. "The crystal structure of a voltage-gated sodium channel," Nature, Nature, vol. 475(7356), pages 353-358, July.
    4. Xu Zhang & Wenlin Ren & Paul DeCaen & Chuangye Yan & Xiao Tao & Lin Tang & Jingjing Wang & Kazuya Hasegawa & Takashi Kumasaka & Jianhua He & Jiawei Wang & David E. Clapham & Nieng Yan, 2012. "Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel," Nature, Nature, vol. 486(7401), pages 130-134, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demin Ma & Yueming Zheng & Xiaoxiao Li & Xiaoyu Zhou & Zhenni Yang & Yan Zhang & Long Wang & Wenbo Zhang & Jiajia Fang & Guohua Zhao & Panpan Hou & Fajun Nan & Wei Yang & Nannan Su & Zhaobing Gao & Ji, 2023. "Ligand activation mechanisms of human KCNQ2 channel," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiwen Chen & Zhanyi Xia & Jie Dong & Bo Huang & Jiangtao Zhang & Feng Zhou & Rui Yan & Yiqiang Shi & Jianke Gong & Juquan Jiang & Zhuo Huang & Daohua Jiang, 2024. "Structural mechanism of voltage-gated sodium channel slow inactivation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Lige Tonggu & Goragot Wisedchaisri & Tamer M. Gamal El-Din & Michael J. Lenaeus & Matthew M. Logan & Tatsuya Toma & Justin Bois & Ning Zheng & William A. Catterall, 2024. "Dual receptor-sites reveal the structural basis for hyperactivation of sodium channels by poison-dart toxin batrachotoxin," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Cheng Zhao & Yuan Xie & Lizhen Xu & Fan Ye & Ximing Xu & Wei Yang & Fan Yang & Jiangtao Guo, 2022. "Structures of a mammalian TRPM8 in closed state," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Katsumasa Irie & Yoshinori Oda & Takashi Sumikama & Atsunori Oshima & Yoshinori Fujiyoshi, 2023. "The structural basis of divalent cation block in a tetrameric prokaryotic sodium channel," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jiangtao Zhang & Yiqiang Shi & Junping Fan & Huiwen Chen & Zhanyi Xia & Bo Huang & Juquan Jiang & Jianke Gong & Zhuo Huang & Daohua Jiang, 2022. "N-type fast inactivation of a eukaryotic voltage-gated sodium channel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Chiung-Wei Huang & Hsing-Jung Lai & Po-Yuan Huang & Ming-Jen Lee & Chung-Chin Kuo, 2016. "The Biophysical Basis Underlying Gating Changes in the p.V1316A Mutant Nav1.7 Channel and the Molecular Pathogenesis of Inherited Erythromelalgia," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    7. Xingya Li & Gengping Jiang & Meipeng Jian & Chen Zhao & Jue Hou & Aaron W. Thornton & Xinyi Zhang & Jefferson Zhe Liu & Benny D. Freeman & Huanting Wang & Lei Jiang & Huacheng Zhang, 2023. "Construction of angstrom-scale ion channels with versatile pore configurations and sizes by metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Qiurong Wu & Jian Huang & Xiao Fan & Kan Wang & Xueqin Jin & Gaoxingyu Huang & Jiaao Li & Xiaojing Pan & Nieng Yan, 2023. "Structural mapping of Nav1.7 antagonists," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Lilia Leisle & Kin Lam & Sepehr Dehghani-Ghahnaviyeh & Eva Fortea & Jason D. Galpin & Christopher A. Ahern & Emad Tajkhorshid & Alessio Accardi, 2022. "Backbone amides are determinants of Cl− selectivity in CLC ion channels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Madeleine R. Wilcox & Aparna Nigam & Nathan G. Glasgow & Chamali Narangoda & Matthew B. Phillips & Dhilon S. Patel & Samaneh Mesbahi-Vasey & Andreea L. Turcu & Santiago Vázquez & Maria G. Kurnikova & , 2022. "Inhibition of NMDA receptors through a membrane-to-channel path," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Yue Li & Tian Yuan & Bo Huang & Feng Zhou & Chao Peng & Xiaojing Li & Yunlong Qiu & Bei Yang & Yan Zhao & Zhuo Huang & Daohua Jiang, 2023. "Structure of human NaV1.6 channel reveals Na+ selectivity and pore blockade by 4,9-anhydro-tetrodotoxin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Ying Wang & Jianxun Mi & Ka Lu & Yanxin Lu & KeWei Wang, 2015. "Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
    13. Ayumi Sumino & Takashi Sumikama & Mikihiro Shibata & Katsumasa Irie, 2023. "Voltage sensors of a Na+ channel dissociate from the pore domain and form inter-channel dimers in the resting state," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Zhihui He & Yonghui Zhao & Michael J. Rau & James A. J. Fitzpatrick & Rajan Sah & Hongzhen Hu & Peng Yuan, 2023. "Structural and functional analysis of human pannexin 2 channel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39307-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.