IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35279-1.html
   My bibliography  Save this article

Backbone amides are determinants of Cl− selectivity in CLC ion channels

Author

Listed:
  • Lilia Leisle

    (Weill Cornell Medical College)

  • Kin Lam

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Sepehr Dehghani-Ghahnaviyeh

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Eva Fortea

    (Weill Cornell Medical College
    Weill Cornell Medical College)

  • Jason D. Galpin

    (University of Iowa)

  • Christopher A. Ahern

    (University of Iowa)

  • Emad Tajkhorshid

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Alessio Accardi

    (Weill Cornell Medical College
    Weill Cornell Medical College
    Weill Cornell Medical College)

Abstract

Chloride homeostasis is regulated in all cellular compartments. CLC-type channels selectively transport Cl− across biological membranes. It is proposed that side-chains of pore-lining residues determine Cl− selectivity in CLC-type channels, but their spatial orientation and contributions to selectivity are not conserved. This suggests a possible role for mainchain amides in selectivity. We use nonsense suppression to insert α-hydroxy acids at pore-lining positions in two CLC-type channels, CLC-0 and bCLC-k, thus exchanging peptide-bond amides with ester-bond oxygens which are incapable of hydrogen-bonding. Backbone substitutions functionally degrade inter-anion discrimination in a site-specific manner. The presence of a pore-occupying glutamate side chain modulates these effects. Molecular dynamics simulations show backbone amides determine ion energetics within the bCLC-k pore and how insertion of an α-hydroxy acid alters selectivity. We propose that backbone-ion interactions are determinants of Cl− specificity in CLC channels in a mechanism reminiscent of that described for K+ channels.

Suggested Citation

  • Lilia Leisle & Kin Lam & Sepehr Dehghani-Ghahnaviyeh & Eva Fortea & Jason D. Galpin & Christopher A. Ahern & Emad Tajkhorshid & Alessio Accardi, 2022. "Backbone amides are determinants of Cl− selectivity in CLC ion channels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35279-1
    DOI: 10.1038/s41467-022-35279-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35279-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35279-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yufeng Zhou & João H. Morais-Cabral & Amelia Kaufman & Roderick MacKinnon, 2001. "Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution," Nature, Nature, vol. 414(6859), pages 43-48, November.
    2. Andreas Vargas Jentzsch & Daniel Emery & Jiri Mareda & Susanta K. Nayak & Pierangelo Metrangolo & Giuseppe Resnati & Naomi Sakai & Stefan Matile, 2012. "Transmembrane anion transport mediated by halogen-bond donors," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    3. Alessio Accardi & Christopher Miller, 2004. "Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels," Nature, Nature, vol. 427(6977), pages 803-807, February.
    4. João H. Morais-Cabral & Yufeng Zhou & Roderick MacKinnon, 2001. "Energetic optimization of ion conduction rate by the K+ selectivity filter," Nature, Nature, vol. 414(6859), pages 37-42, November.
    5. Raimund Dutzler & Ernest B. Campbell & Martine Cadene & Brian T. Chait & Roderick MacKinnon, 2002. "X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity," Nature, Nature, vol. 415(6869), pages 287-294, January.
    6. Sergei Yu. Noskov & Simon Bernèche & Benoît Roux, 2004. "Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands," Nature, Nature, vol. 431(7010), pages 830-834, October.
    7. A. De Angeli & D. Monachello & G. Ephritikhine & J. M. Frachisse & S. Thomine & F. Gambale & H. Barbier-Brygoo, 2006. "The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles," Nature, Nature, vol. 442(7105), pages 939-942, August.
    8. Christopher Miller, 2006. "ClC chloride channels viewed through a transporter lens," Nature, Nature, vol. 440(7083), pages 484-489, March.
    9. Yu-Li Ni & Ai-Seon Kuan & Tsung-Yu Chen, 2014. "Activation and Inhibition of TMEM16A Calcium-Activated Chloride Channels," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    10. Jian Payandeh & Todd Scheuer & Ning Zheng & William A. Catterall, 2011. "The crystal structure of a voltage-gated sodium channel," Nature, Nature, vol. 475(7356), pages 353-358, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Yang & Xue Zhang & Shiwei Ye & Jingtao Zheng & Xiaowei Huang & Fang Yu & Zhenguo Chen & Shiqing Cai & Peng Zhang, 2023. "Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yangzhuoqun Wan & Shuangshuang Guo & Wenxuan Zhen & Lizhen Xu & Xiaoying Chen & Fangyue Liu & Yi Shen & Shuangshuang Liu & Lidan Hu & Xinyan Wang & Fengcan Ye & Qinrui Wang & Han Wen & Fan Yang, 2024. "Structural basis of adenine nucleotides regulation and neurodegenerative pathology in ClC-3 exchanger," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Sivamathini Rajappa & Pannaga Krishnamurthy & Hua Huang & Dejie Yu & Jiří Friml & Jian Xu & Prakash P. Kumar, 2024. "The translocation of a chloride channel from the Golgi to the plasma membrane helps plants adapt to salt stress," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Tao Ma & Lei Wang & Anping Chai & Chao Liu & Wenqiang Cui & Shuguang Yuan & Shannon Wing Ngor Au & Liang Sun & Xiaokang Zhang & Zhenzhen Zhang & Jianping Lu & Yuanzhu Gao & Peiyi Wang & Zhifang Li & Y, 2023. "Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Weiwen Xin & Jingru Fu & Yongchao Qian & Lin Fu & Xiang-Yu Kong & Teng Ben & Lei Jiang & Liping Wen, 2022. "Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Xingya Li & Gengping Jiang & Meipeng Jian & Chen Zhao & Jue Hou & Aaron W. Thornton & Xinyi Zhang & Jefferson Zhe Liu & Benny D. Freeman & Huanting Wang & Lei Jiang & Huacheng Zhang, 2023. "Construction of angstrom-scale ion channels with versatile pore configurations and sizes by metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Keri A McKiernan & Anna K Koster & Merritt Maduke & Vijay S Pande, 2020. "Dynamical model of the CLC-2 ion channel reveals conformational changes associated with selectivity-filter gating," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-24, March.
    8. Cheng Zhao & Yuan Xie & Lizhen Xu & Fan Ye & Ximing Xu & Wei Yang & Fan Yang & Jiangtao Guo, 2022. "Structures of a mammalian TRPM8 in closed state," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Purushotham Selvakumar & Ana I. Fernández-Mariño & Nandish Khanra & Changhao He & Alice J. Paquette & Bing Wang & Ruiqi Huang & Vaughn V. Smider & William J. Rice & Kenton J. Swartz & Joel R. Meyerson, 2022. "Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Katsumasa Irie & Yoshinori Oda & Takashi Sumikama & Atsunori Oshima & Yoshinori Fujiyoshi, 2023. "The structural basis of divalent cation block in a tetrameric prokaryotic sodium channel," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Huiwen Chen & Zhanyi Xia & Jie Dong & Bo Huang & Jiangtao Zhang & Feng Zhou & Rui Yan & Yiqiang Shi & Jianke Gong & Juquan Jiang & Zhuo Huang & Daohua Jiang, 2024. "Structural mechanism of voltage-gated sodium channel slow inactivation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Carus H. Y. Lau & Emelie Flood & Mark J. Hunter & Billy J. Williams-Noonan & Karen M. Corbett & Chai-Ann Ng & James C. Bouwer & Alastair G. Stewart & Eduardo Perozo & Toby W. Allen & Jamie I. Vandenbe, 2024. "Potassium dependent structural changes in the selectivity filter of HERG potassium channels," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Ahmed Rohaim & Bram J. A. Vermeulen & Jing Li & Felix Kümmerer & Federico Napoli & Lydia Blachowicz & João Medeiros-Silva & Benoît Roux & Markus Weingarth, 2022. "A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Jiangtao Zhang & Yiqiang Shi & Junping Fan & Huiwen Chen & Zhanyi Xia & Bo Huang & Juquan Jiang & Jianke Gong & Zhuo Huang & Daohua Jiang, 2022. "N-type fast inactivation of a eukaryotic voltage-gated sodium channel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Debashis Mondal & Manzoor Ahmad & Bijoy Dey & Abhishek Mondal & Pinaki Talukdar, 2022. "Formation of supramolecular channels by reversible unwinding-rewinding of bis(indole) double helix via ion coordination," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Madeleine R. Wilcox & Aparna Nigam & Nathan G. Glasgow & Chamali Narangoda & Matthew B. Phillips & Dhilon S. Patel & Samaneh Mesbahi-Vasey & Andreea L. Turcu & Santiago Vázquez & Maria G. Kurnikova & , 2022. "Inhibition of NMDA receptors through a membrane-to-channel path," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Chiung-Wei Huang & Hsing-Jung Lai & Po-Yuan Huang & Ming-Jen Lee & Chung-Chin Kuo, 2016. "The Biophysical Basis Underlying Gating Changes in the p.V1316A Mutant Nav1.7 Channel and the Molecular Pathogenesis of Inherited Erythromelalgia," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    18. Giorgiana Chietera & Sylvain Chaillou & Magali Bedu & Anne Marmagne & Céline Masclaux-Daubresse & Fabien Chardon, 2018. "Impact of the Genetic–Environment Interaction on the Dynamic of Nitrogen Pools in Arabidopsis," Agriculture, MDPI, vol. 8(2), pages 1-19, February.
    19. Yue Li & Tian Yuan & Bo Huang & Feng Zhou & Chao Peng & Xiaojing Li & Yunlong Qiu & Bei Yang & Yan Zhao & Zhuo Huang & Daohua Jiang, 2023. "Structure of human NaV1.6 channel reveals Na+ selectivity and pore blockade by 4,9-anhydro-tetrodotoxin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Ayumi Sumino & Takashi Sumikama & Mikihiro Shibata & Katsumasa Irie, 2023. "Voltage sensors of a Na+ channel dissociate from the pore domain and form inter-channel dimers in the resting state," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35279-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.