IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0128653.html
   My bibliography  Save this article

Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine

Author

Listed:
  • Ying Wang
  • Jianxun Mi
  • Ka Lu
  • Yanxin Lu
  • KeWei Wang

Abstract

Mexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Nav1.5 and Nav1.7 channels stably expressed in HEK293 cells and compared their use-dependent block in response to mexiletine and lidocaine using whole-cell patch clamp recordings. While the voltage-dependent activation of Nav1.5 or Nav1.7 was not affected by mexiletine and lidocaine, the steady-state fast and slow inactivation of Nav1.5 and Nav1.7 were significantly shifted to hyperpolarized direction by either mexiletine or lidocaine in dose-dependent manner. Both mexiletine and lidocaine enhanced the slow component of closed-state inactivation, with mexiletine exerting stronger inhibition on either Nav1.5 or Nav1.7. The recovery from inactivation of Nav1.5 or Nav1.7 was significantly prolonged by mexiletine compared to lidocaine. Furthermore, mexiletine displayed a pronounced and prominent use-dependent inhibition of Nav1.5 than lidocaine, but not Nav1.7 channels. Taken together, our findings demonstrate differential responses to blockade by mexiletine and lidocaine that preferentially affect the gating of Nav1.5, as compared to Nav1.7; and mexiletine exhibits stronger use-dependent block of Nav1.5. The differential gating properties of Nav1.5 and Nav1.7 in response to mexiletine and lidocaine may help explain the drug effectiveness and advance in new designs of safe and specific sodium channel blockers for treatment of cardiac arrhythmia or pain.

Suggested Citation

  • Ying Wang & Jianxun Mi & Ka Lu & Yanxin Lu & KeWei Wang, 2015. "Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0128653
    DOI: 10.1371/journal.pone.0128653
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128653
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0128653&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0128653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian Payandeh & Tamer M. Gamal El-Din & Todd Scheuer & Ning Zheng & William A. Catterall, 2012. "Crystal structure of a voltage-gated sodium channel in two potentially inactivated states," Nature, Nature, vol. 486(7401), pages 135-139, June.
    2. Robert Karoly & Nora Lenkey & Andras O Juhasz & E Sylvester Vizi & Arpad Mike, 2010. "Fast- or Slow-inactivated State Preference of Na+ Channel Inhibitors: A Simulation and Experimental Study," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Balbi & Paolo Massobrio & Jeanette Hellgren Kotaleski, 2017. "A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-29, September.
    2. Katsumasa Irie & Yoshinori Oda & Takashi Sumikama & Atsunori Oshima & Yoshinori Fujiyoshi, 2023. "The structural basis of divalent cation block in a tetrameric prokaryotic sodium channel," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Huiwen Chen & Zhanyi Xia & Jie Dong & Bo Huang & Jiangtao Zhang & Feng Zhou & Rui Yan & Yiqiang Shi & Jianke Gong & Juquan Jiang & Zhuo Huang & Daohua Jiang, 2024. "Structural mechanism of voltage-gated sodium channel slow inactivation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jiangtao Zhang & Yiqiang Shi & Junping Fan & Huiwen Chen & Zhanyi Xia & Bo Huang & Juquan Jiang & Jianke Gong & Zhuo Huang & Daohua Jiang, 2022. "N-type fast inactivation of a eukaryotic voltage-gated sodium channel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Chiung-Wei Huang & Hsing-Jung Lai & Po-Yuan Huang & Ming-Jen Lee & Chung-Chin Kuo, 2016. "The Biophysical Basis Underlying Gating Changes in the p.V1316A Mutant Nav1.7 Channel and the Molecular Pathogenesis of Inherited Erythromelalgia," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    6. Jian Huang & Xiao Fan & Xueqin Jin & Sooyeon Jo & Hanxiong Bear Zhang & Akie Fujita & Bruce P. Bean & Nieng Yan, 2023. "Cannabidiol inhibits Nav channels through two distinct binding sites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Lige Tonggu & Goragot Wisedchaisri & Tamer M. Gamal El-Din & Michael J. Lenaeus & Matthew M. Logan & Tatsuya Toma & Justin Bois & Ning Zheng & William A. Catterall, 2024. "Dual receptor-sites reveal the structural basis for hyperactivation of sodium channels by poison-dart toxin batrachotoxin," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0128653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.