IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39206-w.html
   My bibliography  Save this article

Local cation-tuned reversible single-molecule switch in electric double layer

Author

Listed:
  • Ling Tong

    (Zhejiang Normal University)

  • Zhou Yu

    (Zhejiang Normal University)

  • Yi-Jing Gao

    (Zhejiang Normal University
    Zhejiang Normal University)

  • Xiao-Chong Li

    (Zhejiang Normal University)

  • Ju-Fang Zheng

    (Zhejiang Normal University)

  • Yong Shao

    (Zhejiang Normal University)

  • Ya-Hao Wang

    (Zhejiang Normal University)

  • Xiao-Shun Zhou

    (Zhejiang Normal University)

Abstract

The nature of molecule-electrode interface is critical for the integration of atomically precise molecules as functional components into circuits. Herein, we demonstrate that the electric field localized metal cations in outer Helmholtz plane can modulate interfacial Au-carboxyl contacts, realizing a reversible single-molecule switch. STM break junction and I-V measurements show the electrochemical gating of aliphatic and aromatic carboxylic acids have a conductance ON/OFF behavior in electrolyte solution containing metal cations (i.e., Na+, K+, Mg2+ and Ca2+), compared to almost no change in conductance without metal cations. In situ Raman spectra reveal strong molecular carboxyl-metal cation coordination at the negatively charged electrode surface, hindering the formation of molecular junctions for electron tunnelling. This work validates the critical role of localized cations in the electric double layer to regulate electron transport at the single-molecule level.

Suggested Citation

  • Ling Tong & Zhou Yu & Yi-Jing Gao & Xiao-Chong Li & Ju-Fang Zheng & Yong Shao & Ya-Hao Wang & Xiao-Shun Zhou, 2023. "Local cation-tuned reversible single-molecule switch in electric double layer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39206-w
    DOI: 10.1038/s41467-023-39206-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39206-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39206-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zheng Liu & Song-Yuan Ding & Zhao-Bin Chen & Xiang Wang & Jing-Hua Tian & Jason R. Anema & Xiao-Shun Zhou & De-Yin Wu & Bing-Wei Mao & Xin Xu & Bin Ren & Zhong-Qun Tian, 2011. "Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    2. Jian Feng Li & Yi Fan Huang & Yong Ding & Zhi Lin Yang & Song Bo Li & Xiao Shun Zhou & Feng Ru Fan & Wei Zhang & Zhi You Zhou & De Yin Wu & Bin Ren & Zhong Lin Wang & Zhong Qun Tian, 2010. "Shell-isolated nanoparticle-enhanced Raman spectroscopy," Nature, Nature, vol. 464(7287), pages 392-395, March.
    3. Sheng-Chao Huang & Xiang Wang & Qing-Qing Zhao & Jin-Feng Zhu & Cha-Wei Li & Yu-Han He & Shu Hu & Matthew M. Sartin & Sen Yan & Bin Ren, 2020. "Probing nanoscale spatial distribution of plasmonically excited hot carriers," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. JongOne Im & Sovan Biswas & Hao Liu & Yanan Zhao & Suman Sen & Sudipta Biswas & Brian Ashcroft & Chad Borges & Xu Wang & Stuart Lindsay & Peiming Zhang, 2016. "Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    5. Yao-Hui Wang & Shisheng Zheng & Wei-Min Yang & Ru-Yu Zhou & Quan-Feng He & Petar Radjenovic & Jin-Chao Dong & Shunning Li & Jiaxin Zheng & Zhi-Lin Yang & Gary Attard & Feng Pan & Zhong-Qun Tian & Jian, 2021. "In situ Raman spectroscopy reveals the structure and dissociation of interfacial water," Nature, Nature, vol. 600(7887), pages 81-85, December.
    6. Dominik Peller & Lukas Z. Kastner & Thomas Buchner & Carmen Roelcke & Florian Albrecht & Nikolaj Moll & Rupert Huber & Jascha Repp, 2020. "Sub-cycle atomic-scale forces coherently control a single-molecule switch," Nature, Nature, vol. 585(7823), pages 58-62, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Zhiheng Yang & Wenzhe Liu & Lihua Zhao & Dongbao Yin & Jianfei Feng & Lidong Li & Xuefeng Guo, 2023. "Single-exonuclease nanocircuits reveal the RNA degradation dynamics of PNPase and demonstrate potential for RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jiří Doležal & Sofia Canola & Prokop Hapala & Rodrigo Cezar Campos Ferreira & Pablo Merino & Martin Švec, 2022. "Evidence of exciton-libron coupling in chirally adsorbed single molecules," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Jin Ming Wang & Qin Yao Zhu & Jeong Heon Lee & Tae Gyun Woo & Yue Xing Zhang & Woo-Dong Jang & Tae Kyu Kim, 2023. "Asymmetric gradient orbital interaction of hetero-diatomic active sites for promoting C − C coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Xiaoxia Chang & Sudarshan Vijay & Yaran Zhao & Nicholas J. Oliveira & Karen Chan & Bingjun Xu, 2022. "Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Xiaoju Yang & Chao Rong & Li Zhang & Zhenkun Ye & Zhiming Wei & Chengdi Huang & Qiao Zhang & Qing Yuan & Yueming Zhai & Fu-Zhen Xuan & Bingjun Xu & Bowei Zhang & Xuan Yang, 2024. "Mechanistic insights into C-C coupling in electrochemical CO reduction using gold superlattices," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Meijia Qiu & Peng Sun & Kai Han & Zhenjiang Pang & Jun Du & Jinliang Li & Jian Chen & Zhong Lin Wang & Wenjie Mai, 2023. "Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80 °C," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Lu Zhang & Wencai Yi & Junfang Li & Guoying Wei & Guangcheng Xi & Lanqun Mao, 2023. "Surfactant-free interfacial growth of graphdiyne hollow microspheres and the mechanistic origin of their SERS activity," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Zhihao Cui & Xing’an Dong & Sung Gu Cho & Modeste N. Tegomoh & Weidong Dai & Fan Dong & Anne C. Co, 2022. "Unraveling the electrocatalytic reduction mechanism of enols on copper in aqueous media," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Fu Wan & Lingling Du & Weigen Chen & Pinyi Wang & Jianxin Wang & Haiyang Shi, 2017. "A Novel Method to Directly Analyze Dissolved Acetic Acid in Transformer Oil without Extraction Using Raman Spectroscopy," Energies, MDPI, vol. 10(7), pages 1-12, July.
    16. Guanhua Ren & Min Zhou & Peijun Hu & Jian-Fu Chen & Haifeng Wang, 2024. "Bubble-water/catalyst triphase interface microenvironment accelerates photocatalytic OER via optimizing semi-hydrophobic OH radical," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Lingling Zhang & Yu Guo & Rui Hao & Yafei Shi & Hongjun You & Hu Nan & Yanzhu Dai & Danjun Liu & Dangyuan Lei & Jixiang Fang, 2021. "Ultra-rapid and highly efficient enrichment of organic pollutants via magnetic mesoporous nanosponge for ultrasensitive nanosensors," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Qian Lv & Junyang Tan & Zhijie Wang & Peng Gu & Haiyun Liu & Lingxiao Yu & Yinping Wei & Lin Gan & Bilu Liu & Jia Li & Feiyu Kang & Hui-Ming Cheng & Qihua Xiong & Ruitao Lv, 2023. "Ultrafast charge transfer in mixed-dimensional WO3-x nanowire/WSe2 heterostructures for attomolar-level molecular sensing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Jiayi Chen & Mohammed Aliasgar & Fernando Buendia Zamudio & Tianyu Zhang & Yilin Zhao & Xu Lian & Lan Wen & Haozhou Yang & Wenping Sun & Sergey M. Kozlov & Wei Chen & Lei Wang, 2023. "Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Xueyan Chen & Qianqian Ding & Chao Bi & Jian Ruan & Shikuan Yang, 2022. "Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39206-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.