IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v585y2020i7823d10.1038_s41586-020-2620-2.html
   My bibliography  Save this article

Sub-cycle atomic-scale forces coherently control a single-molecule switch

Author

Listed:
  • Dominik Peller

    (University of Regensburg)

  • Lukas Z. Kastner

    (University of Regensburg)

  • Thomas Buchner

    (University of Regensburg)

  • Carmen Roelcke

    (University of Regensburg)

  • Florian Albrecht

    (University of Regensburg
    IBM Research-Zurich)

  • Nikolaj Moll

    (IBM Research-Zurich)

  • Rupert Huber

    (University of Regensburg)

  • Jascha Repp

    (University of Regensburg)

Abstract

Scanning probe techniques can leverage atomically precise forces to sculpt matter at surfaces, atom by atom. These forces have been applied quasi-statically to create surface structures1–7 and influence chemical processes8,9, but exploiting local dynamics10–14 to realize coherent control on the atomic scale remains an intriguing prospect. Chemical reactions15–17, conformational changes18,19 and desorption20 have been followed on ultrafast timescales, but directly exerting femtosecond forces on individual atoms to selectively induce molecular motion has yet to be realized. Here we show that the near field of a terahertz wave confined to an atomically sharp tip provides femtosecond atomic-scale forces that selectively induce coherent hindered rotation in the molecular frame of a bistable magnesium phthalocyanine molecule. Combining lightwave-driven scanning tunnelling microscopy21–24 with ultrafast action spectroscopy10,13, we find that the induced rotation modulates the probability of the molecule switching between its two stable adsorption geometries by up to 39 per cent. Mapping the response of the molecule in space and time confirms that the force acts on the atomic scale and within less than an optical cycle (that is, faster than an oscillation period of the carrier wave of light). We anticipate that our strategy might ultimately enable the coherent manipulation of individual atoms within single molecules or solids so that chemical reactions and ultrafast phase transitions can be manipulated on their intrinsic spatio-temporal scales.

Suggested Citation

  • Dominik Peller & Lukas Z. Kastner & Thomas Buchner & Carmen Roelcke & Florian Albrecht & Nikolaj Moll & Rupert Huber & Jascha Repp, 2020. "Sub-cycle atomic-scale forces coherently control a single-molecule switch," Nature, Nature, vol. 585(7823), pages 58-62, September.
  • Handle: RePEc:nat:nature:v:585:y:2020:i:7823:d:10.1038_s41586-020-2620-2
    DOI: 10.1038/s41586-020-2620-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2620-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2620-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexa Herter & Amirhassan Shams-Ansari & Francesca Fabiana Settembrini & Hana K. Warner & Jérôme Faist & Marko Lončar & Ileana-Cristina Benea-Chelmus, 2023. "Terahertz waveform synthesis in integrated thin-film lithium niobate platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jiří Doležal & Sofia Canola & Prokop Hapala & Rodrigo Cezar Campos Ferreira & Pablo Merino & Martin Švec, 2022. "Evidence of exciton-libron coupling in chirally adsorbed single molecules," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Ling Tong & Zhou Yu & Yi-Jing Gao & Xiao-Chong Li & Ju-Fang Zheng & Yong Shao & Ya-Hao Wang & Xiao-Shun Zhou, 2023. "Local cation-tuned reversible single-molecule switch in electric double layer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:585:y:2020:i:7823:d:10.1038_s41586-020-2620-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.