IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38974-9.html
   My bibliography  Save this article

Four-dimensional mapping of dynamic longitudinal brain subcortical development and early learning functions in infants

Author

Listed:
  • Liangjun Chen

    (University of North Carolina at Chapel Hill)

  • Ya Wang

    (University of North Carolina at Chapel Hill)

  • Zhengwang Wu

    (University of North Carolina at Chapel Hill)

  • Yue Shan

    (University of North Carolina at Chapel Hill)

  • Tengfei Li

    (University of North Carolina at Chapel Hill)

  • Sheng-Che Hung

    (University of North Carolina at Chapel Hill)

  • Lei Xing

    (University of North Carolina at Chapel Hill)

  • Hongtu Zhu

    (University of North Carolina at Chapel Hill)

  • Li Wang

    (University of North Carolina at Chapel Hill)

  • Weili Lin

    (University of North Carolina at Chapel Hill)

  • Gang Li

    (University of North Carolina at Chapel Hill)

Abstract

Brain subcortical structures are paramount in many cognitive functions and their aberrations during infancy are predisposed to various neurodevelopmental and neuropsychiatric disorders, making it highly essential to characterize the early subcortical normative growth patterns. This study investigates the volumetric development and surface area expansion of six subcortical structures and their associations with Mullen scales of early learning by leveraging 513 high-resolution longitudinal MRI scans within the first two postnatal years. Results show that (1) each subcortical structure (except for the amygdala with an approximately linear increase) undergoes rapid nonlinear volumetric growth after birth, which slows down at a structure-specific age with bilaterally similar developmental patterns; (2) Subcortical local area expansion reveals structure-specific and spatiotemporally heterogeneous patterns; (3) Positive associations between thalamus and both receptive and expressive languages and between caudate and putamen and fine motor are revealed. This study advances our understanding of the dynamic early subcortical developmental patterns.

Suggested Citation

  • Liangjun Chen & Ya Wang & Zhengwang Wu & Yue Shan & Tengfei Li & Sheng-Che Hung & Lei Xing & Hongtu Zhu & Li Wang & Weili Lin & Gang Li, 2023. "Four-dimensional mapping of dynamic longitudinal brain subcortical development and early learning functions in infants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38974-9
    DOI: 10.1038/s41467-023-38974-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38974-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38974-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Patrick Opiyo Owili & Wei-Hung Lien & Miriam Adoyo Muga & Tang-Huang Lin, 2017. "The Associations between Types of Ambient PM 2.5 and Under-Five and Maternal Mortality in Africa," IJERPH, MDPI, vol. 14(4), pages 1-20, March.
    3. Zhu, Zhongyi & Fung, Wing K., 2004. "Variance component testing in semiparametric mixed models," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 107-118, October.
    4. Hannes Matuschek & Reinhold Kliegl & Matthias Holschneider, 2015. "Smoothing Spline ANOVA Decomposition of Arbitrary Splines: An Application to Eye Movements in Reading," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    5. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    6. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    7. Yiqiang Lu & Riquan Zhang, 2009. "Smoothing spline estimation of generalised varying-coefficient mixed model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 815-825.
    8. Masayoshi Oka, 2022. "Census-Tract-Level Median Household Income and Median Family Income Estimates: A Unidimensional Measure of Neighborhood Socioeconomic Status?," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    9. Ruiyan Luo & Xin Qi, 2023. "Nonlinear function‐on‐scalar regression via functional universal approximation," Biometrics, The International Biometric Society, vol. 79(4), pages 3319-3331, December.
    10. Jinsong Chen & Inyoung Kim & George R. Terrell & Lei Liu, 2014. "Generalised partial linear single-index mixed models for repeated measures data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 291-303, June.
    11. Håland Else Marie & Wiig Astrid Salte & Stålhane Magnus & Hvattum Lars Magnus, 2020. "Evaluating the effectiveness of different network flow motifs in association football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(4), pages 311-323, December.
    12. Tamvada, Jagannadha Pawan, 2010. "The Dynamics of Self-employment in a Developing Country: Evidence from India," MPRA Paper 20042, University Library of Munich, Germany.
    13. M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
    14. Francesca Mandel & Riddhi Pratim Ghosh & Ian Barnett, 2023. "Neural networks for clustered and longitudinal data using mixed effects models," Biometrics, The International Biometric Society, vol. 79(2), pages 711-721, June.
    15. Nikolaus Umlauf & Georg Mayr & Jakob Messner & Achim Zeileis, 2011. "Why Does It Always Rain on Me? A Spatio-Temporal Analysis of Precipitation in Austria," Working Papers 2011-25, Faculty of Economics and Statistics, Universität Innsbruck.
    16. Xuemei Hu & Weiming Yang, 2019. "Semi-parametric small area inference in generalized semi-varying coefficient mixed effects models," Statistical Papers, Springer, vol. 60(4), pages 1039-1058, August.
    17. Duncan Lee & Gavin Shaddick, 2007. "Time-Varying Coefficient Models for the Analysis of Air Pollution and Health Outcome Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1253-1261, December.
    18. Tutz, Gerhard & Kauermann, Goran, 2003. "Generalized linear random effects models with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 43(1), pages 13-28, May.
    19. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
    20. Jorge Tovar & Andrés Clavijo & Julián Cárdenas, 2017. "A strategy to predict association football players’ passing skills," Documentos CEDE 15821, Universidad de los Andes, Facultad de Economía, CEDE.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38974-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.