IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38801-1.html
   My bibliography  Save this article

Photo-triggered full-color circularly polarized luminescence based on photonic capsules for multilevel information encryption

Author

Listed:
  • Siyang Lin

    (Beijing University of Chemical Technology)

  • Yuqi Tang

    (Southeast University)

  • Wenxin Kang

    (Beijing University of Chemical Technology)

  • Hari Krishna Bisoyi

    (Kent State University)

  • Jinbao Guo

    (Beijing University of Chemical Technology)

  • Quan Li

    (Southeast University
    Kent State University)

Abstract

Materials with phototunable full-color circularly polarized luminescence (CPL) have a large storage density, high-security level, and enormous prospects in the field of information encryption and decryption. In this work, device-friendly solid films with color tunability are prepared by constructing Förster resonance energy transfer (FRET) platforms with chiral donors and achiral molecular switches in liquid crystal photonic capsules (LCPCs). These LCPCs exhibit photoswitchable CPL from initial blue emission to RGB trichromatic signals under UV irradiation due to the synergistic effect of energy and chirality transfer and show strong time dependence because of the different FRET efficiencies at each time node. Based on these phototunable CPL and time response characteristics, the concept of multilevel data encryption by using LCPC films is demonstrated.

Suggested Citation

  • Siyang Lin & Yuqi Tang & Wenxin Kang & Hari Krishna Bisoyi & Jinbao Guo & Quan Li, 2023. "Photo-triggered full-color circularly polarized luminescence based on photonic capsules for multilevel information encryption," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38801-1
    DOI: 10.1038/s41467-023-38801-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38801-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38801-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gaowa Naren & Chien-Wei Hsu & Shiming Li & Masakazu Morimoto & Sicheng Tang & Jordi Hernando & Gonzalo Guirado & Masahiro Irie & Françisco M. Raymo & Henrik Sundén & Joakim Andréasson, 2019. "An all-photonic full color RGB system based on molecular photoswitches," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. M. G. Donato & J. Hernandez & A. Mazzulla & C. Provenzano & R. Saija & R. Sayed & S. Vasi & A. Magazzù & P. Pagliusi & R. Bartolino & P. G. Gucciardi & O. M. Maragò & G. Cipparrone, 2014. "Polarization-dependent optomechanics mediated by chiral microresonators," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    3. Yunfeng Li & Jeffrey Jun-Yan Suen & Elisabeth Prince & Egor M. Larin & Anna Klinkova & Héloïse Thérien-Aubin & Shoujun Zhu & Bai Yang & Amr S. Helmy & Oleg D. Lavrentovich & Eugenia Kumacheva, 2016. "Colloidal cholesteric liquid crystal in spherical confinement," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    4. Zizhao Huang & Zhenyi He & Bingbing Ding & He Tian & Xiang Ma, 2022. "Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Qian Wang & Biyan Lin & Meng Chen & Chengxi Zhao & He Tian & Da-Hui Qu, 2022. "A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajie Zhou & Yaxin Wang & Yonghui Song & Shanshan Zhao & Mingjiang Zhang & Guangen Li & Qi Guo & Zhi Tong & Zeyi Li & Shan Jin & Hong-Bin Yao & Manzhou Zhu & Taotao Zhuang, 2024. "Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Mingjian Zeng & Weiguang Wang & Shuman Zhang & Zhisheng Gao & Yingmeng Yan & Yitong Liu & Yulong Qi & Xin Yan & Wei Zhao & Xin Zhang & Ningning Guo & Huanhuan Li & Hui Li & Gaozhan Xie & Ye Tao & Runf, 2024. "Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed Almohammadi & Sayyed Ahmad Khadem & Massimo Bagnani & Alejandro D. Rey & Raffaele Mezzenga, 2022. "Shape and structural relaxation of colloidal tactoids," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Mingjian Zeng & Weiguang Wang & Shuman Zhang & Zhisheng Gao & Yingmeng Yan & Yitong Liu & Yulong Qi & Xin Yan & Wei Zhao & Xin Zhang & Ningning Guo & Huanhuan Li & Hui Li & Gaozhan Xie & Ye Tao & Runf, 2024. "Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yonghong Shi & Jianlei Han & Chengxi Li & Tonghan Zhao & Xue Jin & Pengfei Duan, 2023. "Recyclable soft photonic crystal film with overall improved circularly polarized luminescence," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Bowen Sui & Youliang Zhu & Xuemei Jiang & Yifan Wang & Niboqia Zhang & Zhongyuan Lu & Bai Yang & Yunfeng Li, 2023. "Recastable assemblies of carbon dots into mechanically robust macroscopic materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Hamed Almohammadi & Sandra Martinek & Ye Yuan & Peter Fischer & Raffaele Mezzenga, 2023. "Disentangling kinetics from thermodynamics in heterogeneous colloidal systems," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Tongtong Zhang & Lingzhi Wang & Jing Wang & Zhongqiang Wang & Madhav Gupta & Xuyun Guo & Ye Zhu & Yau Chuen Yiu & Tony K. C. Hui & Yan Zhou & Can Li & Dangyuan Lei & Kwai Hei Li & Xinqiang Wang & Qi W, 2023. "Multimodal dynamic and unclonable anti-counterfeiting using robust diamond microparticles on heterogeneous substrate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Richard M. Parker & Tianheng H. Zhao & Bruno Frka-Petesic & Silvia Vignolini, 2022. "Cellulose photonic pigments," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38801-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.