IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v458y2009i7235d10.1038_nature07827.html
   My bibliography  Save this article

Direct observation of a pressure-induced metal-to-semiconductor transition in lithium

Author

Listed:
  • Takahiro Matsuoka

    (KYOKUGEN, Center for Quantum Science and Technology under Extreme Conditions, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan)

  • Katsuya Shimizu

    (KYOKUGEN, Center for Quantum Science and Technology under Extreme Conditions, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan)

Abstract

Li and Na show resistance Putting solids under pressure reduces the distances between their atoms, and at extremely high pressures, as electron density increases, all materials approach an ideal metal. Under pressure, then, 'simple' metals such as lithium and sodium might be expected to become increasingly better conductors. But about 10 years ago, calculations suggested that neither element responds in such a straightforward manner. Instead, it was predicted that the alkali atoms would form pairs under pressure and yield more complex structures with insulating properties. Two groups in this issue present experimental confirmation that this is the case; lithium and sodium become not more metal-like but less metal-like as pressure is applied. Ma et al. find that under about fivefold compression (200 GPa pressure), sodium transforms into a dense insulating material that is optically transparent and lacks a metallic sheen. Takahiro Matsuoka and Katsuya Shimizu show that lithium transforms from a metal to a semiconductor at twofold compression (80 GPa).

Suggested Citation

  • Takahiro Matsuoka & Katsuya Shimizu, 2009. "Direct observation of a pressure-induced metal-to-semiconductor transition in lithium," Nature, Nature, vol. 458(7235), pages 186-189, March.
  • Handle: RePEc:nat:nature:v:458:y:2009:i:7235:d:10.1038_nature07827
    DOI: 10.1038/nature07827
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07827
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Lim & A. C. Hire & Y. Quan & J. S. Kim & S. R. Xie & S. Sinha & R. S. Kumar & D. Popov & C. Park & R. J. Hemley & Y. K. Vohra & J. J. Hamlin & R. G. Hennig & P. J. Hirschfeld & G. R. Stewart, 2022. "Creating superconductivity in WB2 through pressure-induced metastable planar defects," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xiaoyang Wang & Zhenyu Wang & Pengyue Gao & Chengqian Zhang & Jian Lv & Han Wang & Haifeng Liu & Yanchao Wang & Yanming Ma, 2023. "Data-driven prediction of complex crystal structures of dense lithium," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:458:y:2009:i:7235:d:10.1038_nature07827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.