IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38608-0.html
   My bibliography  Save this article

Bimodal ionic photomemristor based on a high-temperature oxide superconductor/semiconductor junction

Author

Listed:
  • Ralph El Hage

    (Université Paris-Saclay)

  • Vincent Humbert

    (Université Paris-Saclay)

  • Victor Rouco

    (Université Paris-Saclay)

  • Gabriel Sánchez-Santolino

    (Universidad Complutense de Madrid)

  • Aurelien Lagarrigue

    (Université Paris-Saclay)

  • Kevin Seurre

    (Université Paris-Saclay)

  • Santiago J. Carreira

    (Université Paris-Saclay)

  • Anke Sander

    (Université Paris-Saclay)

  • Jérôme Charliac

    (CNRS, Ecole Polytechnique)

  • Salvatore Mesoraca

    (Université Paris-Saclay)

  • Juan Trastoy

    (Université Paris-Saclay)

  • Javier Briatico

    (Université Paris-Saclay)

  • Jacobo Santamaría

    (Université Paris-Saclay
    Universidad Complutense de Madrid)

  • Javier E. Villegas

    (Université Paris-Saclay)

Abstract

Memristors, a cornerstone for neuromorphic electronics, respond to the history of electrical stimuli by varying their electrical resistance across a continuum of states. Much effort has been recently devoted to developing an analogous response to optical excitation. Here we realize a novel tunnelling photo-memristor whose behaviour is bimodal: its resistance is determined by the dual electrical-optical history. This is obtained in a device of ultimate simplicity: an interface between a high-temperature superconductor and a transparent semiconductor. The exploited mechanism is a reversible nanoscale redox reaction between both materials, whose oxygen content determines the electron tunnelling rate across their interface. The redox reaction is optically driven via an interplay between electrochemistry, photovoltaic effects and photo-assisted ion migration. Besides their fundamental interest, the unveiled electro-optic memory effects have considerable technological potential. Especially in combination with high-temperature superconductivity which, in addition to facilitating low-dissipation connectivity, brings photo-memristive effects to the realm of superconducting electronics.

Suggested Citation

  • Ralph El Hage & Vincent Humbert & Victor Rouco & Gabriel Sánchez-Santolino & Aurelien Lagarrigue & Kevin Seurre & Santiago J. Carreira & Anke Sander & Jérôme Charliac & Salvatore Mesoraca & Juan Trast, 2023. "Bimodal ionic photomemristor based on a high-temperature oxide superconductor/semiconductor junction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38608-0
    DOI: 10.1038/s41467-023-38608-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38608-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38608-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bora, Leena V. & Mewada, Rajubhai K., 2017. "Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1393-1421.
    2. V. Garcia & S. Fusil & K. Bouzehouane & S. Enouz-Vedrenne & N. D. Mathur & A. Barthélémy & M. Bibes, 2009. "Giant tunnel electroresistance for non-destructive readout of ferroelectric states," Nature, Nature, vol. 460(7251), pages 81-84, July.
    3. Xiao Long & Huan Tan & Florencio Sánchez & Ignasi Fina & Josep Fontcuberta, 2021. "Non-volatile optical switch of resistance in photoferroelectric tunnel junctions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Mohamad Fakhrul Ridhwan Samsudin, 2023. "Photovoltaic-Assisted Photo(electro)catalytic Hydrogen Production: A Review," Energies, MDPI, vol. 16(15), pages 1-19, August.
    3. Jinlei Zhang & Jiayong Zhang & Yaping Qi & Shuainan Gong & Hang Xu & Zhenqi Liu & Ran Zhang & Mohammad A. Sadi & Demid Sychev & Run Zhao & Hongbin Yang & Zhenping Wu & Dapeng Cui & Lin Wang & Chunlan , 2024. "Room-temperature ferroelectric, piezoelectric and resistive switching behaviors of single-element Te nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Hui Bai & Jinsong Wu & Xianli Su & Haoyang Peng & Zhi Li & Dongwang Yang & Qingjie Zhang & Ctirad Uher & Xinfeng Tang, 2021. "Electroresistance in multipolar antiferroelectric Cu2Se semiconductor," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    5. Chen, Guanyi & Dong, Xiaoshan & Yan, Beibei & Li, Jian & Yoshikawa, Kunio & Jiao, Liguo, 2022. "Photothermal steam reforming: A novel method for tar elimination in biomass gasification," Applied Energy, Elsevier, vol. 305(C).
    6. Ahmadi, Younes & Kim, Ki-Hyun, 2024. "Modification strategies for visible-light photocatalysts and their performance-enhancing effects on photocatalytic degradation of volatile organic compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Martin F. Sarott & Marta D. Rossell & Manfred Fiebig & Morgan Trassin, 2022. "Multilevel polarization switching in ferroelectric thin films," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38608-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.