IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38155-8.html
   My bibliography  Save this article

Solvent-derived defects suppress adsorption in MOF-74

Author

Listed:
  • Yao Fu

    (Zhejiang University
    Zhejiang University
    Univ. Grenoble Alpes, CEA, IRIG-MEM
    University of California)

  • Yifeng Yao

    (Zhejiang University)

  • Alexander C. Forse

    (University of California
    University of Cambridge
    University of California)

  • Jianhua Li

    (Zhejiang University)

  • Kenji Mochizuki

    (Zhejiang University)

  • Jeffrey R. Long

    (University of California
    University of California
    Lawrence Berkeley National Laboratory)

  • Jeffrey A. Reimer

    (University of California)

  • Gaël Paëpe

    (Univ. Grenoble Alpes, CEA, IRIG-MEM)

  • Xueqian Kong

    (Zhejiang University
    Zhejiang University
    Shanghai Jiao Tong University)

Abstract

Defects in metal-organic frameworks (MOFs) have great impact on their nano-scale structure and physiochemical properties. However, isolated defects are easily concealed when the frameworks are interrogated by typical characterization methods. In this work, we unveil the presence of solvent-derived formate defects in MOF-74, an important class of MOFs with open metal sites. With multi-dimensional solid-state nuclear magnetic resonance (NMR) investigations, we uncover the ligand substitution role of formate and its chemical origin from decomposed N,N-dimethylformamide (DMF) solvent. The placement and coordination structure of formate defects are determined by 13C NMR and density functional theory (DFT) calculations. The extra metal-oxygen bonds with formates partially eliminate open metal sites and lead to a quantitative decrease of N2 and CO2 adsorption with respect to the defect concentration. In-situ NMR analysis and molecular simulations of CO2 dynamics elaborate the adsorption mechanisms in defective MOF-74. Our study establishes comprehensive strategies to search, elucidate and manipulate defects in MOFs.

Suggested Citation

  • Yao Fu & Yifeng Yao & Alexander C. Forse & Jianhua Li & Kenji Mochizuki & Jeffrey R. Long & Jeffrey A. Reimer & Gaël Paëpe & Xueqian Kong, 2023. "Solvent-derived defects suppress adsorption in MOF-74," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38155-8
    DOI: 10.1038/s41467-023-38155-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38155-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38155-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenlong Xu & Yuwei Zhang & Junjun Wang & Yixiu Xu & Li Bian & Qiang Ju & Yuemin Wang & Zhenlan Fang, 2022. "Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Thomas M. McDonald & Jarad A. Mason & Xueqian Kong & Eric D. Bloch & David Gygi & Alessandro Dani & Valentina Crocellà & Filippo Giordanino & Samuel O. Odoh & Walter S. Drisdell & Bess Vlaisavljevich , 2015. "Cooperative insertion of CO2 in diamine-appended metal-organic frameworks," Nature, Nature, vol. 519(7543), pages 303-308, March.
    3. Zhenfeng Pang & Jun Zhang & Weicheng Cao & Xueqian Kong & Xiaogang Peng, 2019. "Partitioning surface ligands on nanocrystals for maximal solubility," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Matthew J. Cliffe & Wei Wan & Xiaodong Zou & Philip A. Chater & Annette K. Kleppe & Matthew G. Tucker & Heribert Wilhelm & Nicholas P. Funnell & François-Xavier Coudert & Andrew L Goodwin, 2014. "Correlated defect nanoregions in a metal–organic framework," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    5. Xinchen Kang & Kai Lyu & Lili Li & Jiangnan Li & Louis Kimberley & Bin Wang & Lifei Liu & Yongqiang Cheng & Mark D. Frogley & Svemir Rudić & Anibal J. Ramirez-Cuesta & Robert A. W. Dryfe & Buxing Han , 2019. "Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    2. Adam F. Sapnik & Irene Bechis & Alice M. Bumstead & Timothy Johnson & Philip A. Chater & David A. Keen & Kim E. Jelfs & Thomas D. Bennett, 2022. "Multivariate analysis of disorder in metal–organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Sergio Tatay & Sonia Martínez-Giménez & Ana Rubio-Gaspar & Eloy Gómez-Oliveira & Javier Castells-Gil & Zhuoya Dong & Álvaro Mayoral & Neyvis Almora-Barrios & Natalia M. Padial & Carlos Martí-Gastaldo, 2023. "Synthetic control of correlated disorder in UiO-66 frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    5. Irani, Maryam & Jacobson, Andrew T. & Gasem, Khaled A.M. & Fan, Maohong, 2018. "Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture," Energy, Elsevier, vol. 157(C), pages 1-9.
    6. Ga, Seongbin & An, Nahyeon & Lee, Gi Yeol & Joo, Chonghyo & Kim, Junghwan, 2024. "Multidisciplinary high-throughput screening of metal–organic framework for ammonia-based green hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Guang-Rui Si & Xiang-Jing Kong & Tao He & Zhengqing Zhang & Jian-Rong Li, 2024. "Simultaneous capture of trace benzene and SO2 in a robust Ni(II)-pyrazolate framework," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Zhu, Xuancan & Ge, Tianshu & Yang, Fan & Wang, Ruzhu, 2021. "Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Wenlong Xu & Yuwei Zhang & Junjun Wang & Yixiu Xu & Li Bian & Qiang Ju & Yuemin Wang & Zhenlan Fang, 2022. "Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Ke Li & Yucheng Zhao & Jian Yang & Jinlou Gu, 2022. "Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38155-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.