IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48936-4.html
   My bibliography  Save this article

Enantioselective nickel-catalyzed anodic oxidative dienylation and allylation reactions

Author

Listed:
  • Qinglin Zhang

    (University of Science and Technology of China)

  • Jiayin Zhang

    (University of Science and Technology of China)

  • Wangjie Zhu

    (University of Science and Technology of China)

  • Ruimin Lu

    (University of Science and Technology of China)

  • Chang Guo

    (University of Science and Technology of China)

Abstract

Precision control of stereochemistry in radical reactions remains a formidable challenge due to the prevalence of incidental racemic background reactions resulting from undirected substrate oxidation in the absence of chiral induction. In this study, we devised an thoughtful approach—electricity-driven asymmetric Lewis acid catalysis—to circumvent this impediment. This methodology facilitates both asymmetric dienylation and allylation reactions, resulting in the formation of all-carbon quaternary stereocenters and demonstrating significant potential in the modular synthesis of functional and chiral benzoxazole-oxazoline (Boox) ligands. Notably, the involvement of chiral Lewis acids in both the electrochemical activation and stereoselectivity-defining radical stages offers innovative departures for designing single electron transfer-based reactions, significantly underscoring the relevance of this approach as a multifaceted and universally applicable strategy for various fields of study, including electrosynthesis, organic chemistry, and drug discovery.

Suggested Citation

  • Qinglin Zhang & Jiayin Zhang & Wangjie Zhu & Ruimin Lu & Chang Guo, 2024. "Enantioselective nickel-catalyzed anodic oxidative dienylation and allylation reactions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48936-4
    DOI: 10.1038/s41467-024-48936-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48936-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48936-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yun-Zhao Wang & Zhen-Hua Wang & Inbal L. Eshel & Bing Sun & Dong Liu & Yu-Cheng Gu & Anat Milo & Tian-Sheng Mei, 2023. "Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xuefeng Tan & Qingli Wang & Jianwei Sun, 2023. "Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48936-4. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.