IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37868-0.html
   My bibliography  Save this article

Native doublet microtubules from Tetrahymena thermophila reveal the importance of outer junction proteins

Author

Listed:
  • Shintaroh Kubo

    (McGill University
    McGill University)

  • Corbin S. Black

    (McGill University
    McGill University)

  • Ewa Joachimiak

    (Nencki Institute of Experimental Biology of Polish Academy of Sciences)

  • Shun Kai Yang

    (McGill University
    McGill University)

  • Thibault Legal

    (McGill University
    McGill University)

  • Katya Peri

    (McGill University
    McGill University)

  • Ahmad Abdelzaher Zaki Khalifa

    (McGill University
    McGill University)

  • Avrin Ghanaeian

    (McGill University
    McGill University)

  • Caitlyn L. McCafferty

    (University of Texas)

  • Melissa Valente-Paterno

    (McGill University
    McGill University)

  • Chelsea Bellis

    (McGill University)

  • Phuong M. Huynh

    (McGill University)

  • Zhe Fan

    (McGill University)

  • Edward M. Marcotte

    (University of Texas)

  • Dorota Wloga

    (Nencki Institute of Experimental Biology of Polish Academy of Sciences)

  • Khanh Huy Bui

    (McGill University
    McGill University)

Abstract

Cilia are ubiquitous eukaryotic organelles responsible for cellular motility and sensory functions. The ciliary axoneme is a microtubule-based cytoskeleton consisting of two central singlets and nine outer doublet microtubules. Cryo-electron microscopy-based studies have revealed a complex network inside the lumen of both tubules composed of microtubule-inner proteins (MIPs). However, the functions of most MIPs remain unknown. Here, we present single-particle cryo-EM-based analyses of the Tetrahymena thermophila native doublet microtubule and identify 42 MIPs. These data shed light on the evolutionarily conserved and diversified roles of MIPs. In addition, we identified MIPs potentially responsible for the assembly and stability of the doublet outer junction. Knockout of the evolutionarily conserved outer junction component CFAP77 moderately diminishes Tetrahymena swimming speed and beat frequency, indicating the important role of CFAP77 and outer junction stability in cilia beating generation and/or regulation.

Suggested Citation

  • Shintaroh Kubo & Corbin S. Black & Ewa Joachimiak & Shun Kai Yang & Thibault Legal & Katya Peri & Ahmad Abdelzaher Zaki Khalifa & Avrin Ghanaeian & Caitlyn L. McCafferty & Melissa Valente-Paterno & Ch, 2023. "Native doublet microtubules from Tetrahymena thermophila reveal the importance of outer junction proteins," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37868-0
    DOI: 10.1038/s41467-023-37868-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37868-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37868-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Mikito Owa & Takayuki Uchihashi & Haru-aki Yanagisawa & Takashi Yamano & Hiro Iguchi & Hideya Fukuzawa & Ken-ichi Wakabayashi & Toshio Ando & Masahide Kikkawa, 2019. "Inner lumen proteins stabilize doublet microtubules in cilia and flagella," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Muneyoshi Ichikawa & Dinan Liu & Panagiotis L. Kastritis & Kaustuv Basu & Tzu Chin Hsu & Shunkai Yang & Khanh Huy Bui, 2017. "Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    4. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avrin Ghanaeian & Sumita Majhi & Caitlyn L. McCafferty & Babak Nami & Corbin S. Black & Shun Kai Yang & Thibault Legal & Ophelia Papoulas & Martyna Janowska & Melissa Valente-Paterno & Edward M. Marco, 2023. "Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Michelle M. Shimogawa & Angeline S. Wijono & Hui Wang & Jiayan Zhang & Jihui Sha & Natasha Szombathy & Sabeeca Vadakkan & Paula Pelayo & Keya Jonnalagadda & James Wohlschlegel & Z. Hong Zhou & Kent L., 2023. "FAP106 is an interaction hub for assembling microtubule inner proteins at the cilium inner junction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jens S. Andersen & Aaran Vijayakumaran & Christopher Godbehere & Esben Lorentzen & Vito Mennella & Kenneth Bødtker Schou, 2024. "Uncovering structural themes across cilia microtubule inner proteins with implications for human cilia function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michelle M. Shimogawa & Angeline S. Wijono & Hui Wang & Jiayan Zhang & Jihui Sha & Natasha Szombathy & Sabeeca Vadakkan & Paula Pelayo & Keya Jonnalagadda & James Wohlschlegel & Z. Hong Zhou & Kent L., 2023. "FAP106 is an interaction hub for assembling microtubule inner proteins at the cilium inner junction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xueming Meng & Cong Xu & Jiawei Li & Benhua Qiu & Jiajun Luo & Qin Hong & Yujie Tong & Chuyu Fang & Yanyan Feng & Rui Ma & Xiangyi Shi & Cheng Lin & Chen Pan & Xueliang Zhu & Xiumin Yan & Yao Cong, 2024. "Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Agnes Adler & Mamata Bangera & J. Wouter Beugelink & Salima Bahri & Hugo Ingen & Carolyn A. Moores & Marc Baldus, 2024. "A structural and dynamic visualization of the interaction between MAP7 and microtubules," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Yutaka Takeda & Takumi Chinen & Shunnosuke Honda & Sho Takatori & Shotaro Okuda & Shohei Yamamoto & Masamitsu Fukuyama & Koh Takeuchi & Taisuke Tomita & Shoji Hata & Daiju Kitagawa, 2024. "Molecular basis promoting centriole triplet microtubule assembly," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    9. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37868-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.