IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15035.html
   My bibliography  Save this article

Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins

Author

Listed:
  • Muneyoshi Ichikawa

    (McGill University)

  • Dinan Liu

    (McGill University)

  • Panagiotis L. Kastritis

    (Structural and Computational Biology Unit, European Molecular Biology Laboratory)

  • Kaustuv Basu

    (Facility for Electron Microscopy Research, McGill University)

  • Tzu Chin Hsu

    (McGill University)

  • Shunkai Yang

    (McGill University)

  • Khanh Huy Bui

    (McGill University
    Groupe de Recherche Axé sur la Structure des Protéines (GRASP))

Abstract

Cilia are ubiquitous, hair-like appendages found in eukaryotic cells that carry out functions of cell motility and sensory reception. Cilia contain an intriguing cytoskeletal structure, termed the axoneme that consists of nine doublet microtubules radially interlinked and longitudinally organized in multiple specific repeat units. Little is known, however, about how the axoneme allows cilia to be both actively bendable and sturdy or how it is assembled. To answer these questions, we used cryo-electron microscopy to structurally analyse several of the repeating units of the doublet at sub-nanometre resolution. This structural detail enables us to unambiguously assign α- and β-tubulins in the doublet microtubule lattice. Our study demonstrates the existence of an inner sheath composed of different kinds of microtubule inner proteins inside the doublet that likely stabilizes the structure and facilitates the specific building of the B-tubule.

Suggested Citation

  • Muneyoshi Ichikawa & Dinan Liu & Panagiotis L. Kastritis & Kaustuv Basu & Tzu Chin Hsu & Shunkai Yang & Khanh Huy Bui, 2017. "Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15035
    DOI: 10.1038/ncomms15035
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15035
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnes Adler & Mamata Bangera & J. Wouter Beugelink & Salima Bahri & Hugo Ingen & Carolyn A. Moores & Marc Baldus, 2024. "A structural and dynamic visualization of the interaction between MAP7 and microtubules," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Yutaka Takeda & Takumi Chinen & Shunnosuke Honda & Sho Takatori & Shotaro Okuda & Shohei Yamamoto & Masamitsu Fukuyama & Koh Takeuchi & Taisuke Tomita & Shoji Hata & Daiju Kitagawa, 2024. "Molecular basis promoting centriole triplet microtubule assembly," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Michelle M. Shimogawa & Angeline S. Wijono & Hui Wang & Jiayan Zhang & Jihui Sha & Natasha Szombathy & Sabeeca Vadakkan & Paula Pelayo & Keya Jonnalagadda & James Wohlschlegel & Z. Hong Zhou & Kent L., 2023. "FAP106 is an interaction hub for assembling microtubule inner proteins at the cilium inner junction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Shintaroh Kubo & Corbin S. Black & Ewa Joachimiak & Shun Kai Yang & Thibault Legal & Katya Peri & Ahmad Abdelzaher Zaki Khalifa & Avrin Ghanaeian & Caitlyn L. McCafferty & Melissa Valente-Paterno & Ch, 2023. "Native doublet microtubules from Tetrahymena thermophila reveal the importance of outer junction proteins," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Jens S. Andersen & Aaran Vijayakumaran & Christopher Godbehere & Esben Lorentzen & Vito Mennella & Kenneth Bødtker Schou, 2024. "Uncovering structural themes across cilia microtubule inner proteins with implications for human cilia function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.