IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37791-4.html
   My bibliography  Save this article

WHIM Syndrome-linked CXCR4 mutations drive osteoporosis

Author

Listed:
  • Adrienne Anginot

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

  • Julie Nguyen

    (CNRS, GDR3697 “Microenvironment of tumor niches”
    Université Paris-Saclay)

  • Zeina Abou Nader

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

  • Vincent Rondeau

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

  • Amélie Bonaud

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

  • Maria Kalogeraki

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

  • Antoine Boutin

    (Université Côte d’Azur, CNRS)

  • Julia P. Lemos

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

  • Valeria Bisio

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

  • Joyce Koenen

    (CNRS, GDR3697 “Microenvironment of tumor niches”
    Université Paris-Saclay)

  • Lea Hanna Doumit Sakr

    (AP-HP Hospital Lariboisière)

  • Amandine Picart

    (AP-HP Hospital Lariboisière)

  • Amélie Coudert

    (AP-HP Hospital Lariboisière)

  • Sylvain Provot

    (AP-HP Hospital Lariboisière)

  • Nicolas Dulphy

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

  • Michel Aurrand-Lions

    (CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis
    CNRS, INSERM, Institut Paoli-Calmettes, CRCM)

  • Stéphane J. C. Mancini

    (CNRS, GDR3697 “Microenvironment of tumor niches”
    CNRS, INSERM, Institut Paoli-Calmettes, CRCM)

  • Gwendal Lazennec

    (CNRS, GDR3697 “Microenvironment of tumor niches”
    CNRS, SYS2DIAG-ALCEDIAG, Cap Delta)

  • David H. McDermott

    (National Institute of Allergy and Infectious Diseases, NIH)

  • Fabien Guidez

    (The Organization for Partnerships in Leukemia, Hôpital Saint-Louis
    Université Paris Cité, Institut de Recherche Saint-Louis)

  • Claudine Blin-Wakkach

    (Université Côte d’Azur, CNRS)

  • Philip M. Murphy

    (National Institute of Allergy and Infectious Diseases, NIH)

  • Martine Cohen-Solal

    (AP-HP Hospital Lariboisière)

  • Marion Espéli

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

  • Matthieu Rouleau

    (Université Côte d’Azur, CNRS)

  • Karl Balabanian

    (Université Paris Cité, Institut de Recherche Saint-Louis
    CNRS, GDR3697 “Microenvironment of tumor niches”
    The Organization for Partnerships in Leukemia, Hôpital Saint-Louis)

Abstract

WHIM Syndrome is a rare immunodeficiency caused by gain-of-function CXCR4 mutations. Here we report a decrease in bone mineral density in 25% of WHIM patients and bone defects leading to osteoporosis in a WHIM mouse model. Imbalanced bone tissue is observed in mutant mice combining reduced osteoprogenitor cells and increased osteoclast numbers. Mechanistically, impaired CXCR4 desensitization disrupts cell cycle progression and osteogenic commitment of skeletal stromal/stem cells, while increasing their pro-osteoclastogenic capacities. Impaired osteogenic differentiation is evidenced in primary bone marrow stromal cells from WHIM patients. In mice, chronic treatment with the CXCR4 antagonist AMD3100 normalizes in vitro osteogenic fate of mutant skeletal stromal/stem cells and reverses in vivo the loss of skeletal cells, demonstrating that proper CXCR4 desensitization is required for the osteogenic specification of skeletal stromal/stem cells. Our study provides mechanistic insights into how CXCR4 signaling regulates the osteogenic fate of skeletal cells and the balance between bone formation and resorption.

Suggested Citation

  • Adrienne Anginot & Julie Nguyen & Zeina Abou Nader & Vincent Rondeau & Amélie Bonaud & Maria Kalogeraki & Antoine Boutin & Julia P. Lemos & Valeria Bisio & Joyce Koenen & Lea Hanna Doumit Sakr & Amand, 2023. "WHIM Syndrome-linked CXCR4 mutations drive osteoporosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37791-4
    DOI: 10.1038/s41467-023-37791-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37791-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37791-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiwang Zhang & Chao Niu & Ling Ye & Haiyang Huang & Xi He & Wei-Gang Tong & Jason Ross & Jeff Haug & Teri Johnson & Jian Q. Feng & Stephen Harris & Leanne M. Wiedemann & Yuji Mishina & Linheng Li, 2003. "Identification of the haematopoietic stem cell niche and control of the niche size," Nature, Nature, vol. 425(6960), pages 836-841, October.
    2. Adam Greenbaum & Yen-Michael S. Hsu & Ryan B. Day & Laura G. Schuettpelz & Matthew J. Christopher & Joshua N. Borgerding & Takashi Nagasawa & Daniel C. Link, 2013. "CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance," Nature, Nature, vol. 495(7440), pages 227-230, March.
    3. Runfeng Miao & Harim Chun & Xing Feng & Ana Cordeiro Gomes & Jungmin Choi & João P. Pereira, 2022. "Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Tomer Itkin & Shiri Gur-Cohen & Joel A. Spencer & Amir Schajnovitz & Saravana K. Ramasamy & Anjali P. Kusumbe & Guy Ledergor & Yookyung Jung & Idan Milo & Michael G. Poulos & Alexander Kalinkovich & A, 2016. "Correction: Corrigendum: Distinct bone marrow blood vessels differentially regulate haematopoiesis," Nature, Nature, vol. 538(7624), pages 274-274, October.
    5. Jianlong Sun & Azucena Ramos & Brad Chapman & Jonathan B. Johnnidis & Linda Le & Yu-Jui Ho & Allon Klein & Oliver Hofmann & Fernando D. Camargo, 2014. "Clonal dynamics of native haematopoiesis," Nature, Nature, vol. 514(7522), pages 322-327, October.
    6. Anastasia N. Tikhonova & Igor Dolgalev & Hai Hu & Kishor K. Sivaraj & Edlira Hoxha & Álvaro Cuesta-Domínguez & Sandra Pinho & Ilseyar Akhmetzyanova & Jie Gao & Matthew Witkowski & Maria Guillamot & Mi, 2019. "The bone marrow microenvironment at single-cell resolution," Nature, Nature, vol. 569(7755), pages 222-228, May.
    7. Lei Ding & Thomas L. Saunders & Grigori Enikolopov & Sean J. Morrison, 2012. "Endothelial and perivascular cells maintain haematopoietic stem cells," Nature, Nature, vol. 481(7382), pages 457-462, January.
    8. Melih Acar & Kiranmai S. Kocherlakota & Malea M. Murphy & James G. Peyer & Hideyuki Oguro & Christopher N. Inra & Christabel Jaiyeola & Zhiyu Zhao & Katherine Luby-Phelps & Sean J. Morrison, 2015. "Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal," Nature, Nature, vol. 526(7571), pages 126-130, October.
    9. Tomer Itkin & Shiri Gur-Cohen & Joel A. Spencer & Amir Schajnovitz & Saravana K. Ramasamy & Anjali P. Kusumbe & Guy Ledergor & Yookyung Jung & Idan Milo & Michael G. Poulos & Alexander Kalinkovich & A, 2016. "Distinct bone marrow blood vessels differentially regulate haematopoiesis," Nature, Nature, vol. 532(7599), pages 323-328, April.
    10. Yuki Matsushita & Mizuki Nagata & Kenneth M. Kozloff & Joshua D. Welch & Koji Mizuhashi & Nicha Tokavanich & Shawn A. Hallett & Daniel C. Link & Takashi Nagasawa & Wanida Ono & Noriaki Ono, 2020. "A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    11. Lei Ding & Sean J. Morrison, 2013. "Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches," Nature, Nature, vol. 495(7440), pages 231-235, March.
    12. Anastasia N. Tikhonova & Igor Dolgalev & Hai Hu & Kishor K. Sivaraj & Edlira Hoxha & Álvaro Cuesta-Domínguez & Sandra Pinho & Ilseyar Akhmetzyanova & Jie Gao & Matthew Witkowski & Maria Guillamot & Mi, 2019. "Author Correction: The bone marrow microenvironment at single-cell resolution," Nature, Nature, vol. 572(7767), pages 6-6, August.
    13. Yuya Kunisaki & Ingmar Bruns & Christoph Scheiermann & Jalal Ahmed & Sandra Pinho & Dachuan Zhang & Toshihide Mizoguchi & Qiaozhi Wei & Daniel Lucas & Keisuke Ito & Jessica C. Mar & Aviv Bergman & Pau, 2013. "Arteriolar niches maintain haematopoietic stem cell quiescence," Nature, Nature, vol. 502(7473), pages 637-643, October.
    14. Simón Méndez-Ferrer & Tatyana V. Michurina & Francesca Ferraro & Amin R. Mazloom & Ben D. MacArthur & Sergio A. Lira & David T. Scadden & Avi Ma’ayan & Grigori N. Enikolopov & Paul S. Frenette, 2010. "Mesenchymal and haematopoietic stem cells form a unique bone marrow niche," Nature, Nature, vol. 466(7308), pages 829-834, August.
    15. L. M. Calvi & G. B. Adams & K. W. Weibrecht & J. M. Weber & D. P. Olson & M. C. Knight & R. P. Martin & E. Schipani & P. Divieti & F. R. Bringhurst & L. A. Milner & H. M. Kronenberg & D. T. Scadden, 2003. "Osteoblastic cells regulate the haematopoietic stem cell niche," Nature, Nature, vol. 425(6960), pages 841-846, October.
    16. Bo Shen & Alpaslan Tasdogan & Jessalyn M. Ubellacker & Jingzhu Zhang & Elena D. Nosyreva & Liming Du & Malea M. Murphy & Shuiqing Hu & Yating Yi & Nergis Kara & Xin Liu & Shay Guela & Yuemeng Jia & Vi, 2021. "A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis," Nature, Nature, vol. 591(7850), pages 438-444, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trent D. Hall & Hyunjin Kim & Mahmoud Dabbah & Jacquelyn A. Myers & Jeremy Chase Crawford & Antonio Morales-Hernandez & Claire E. Caprio & Pramika Sriram & Emilia Kooienga & Marta Derecka & Esther A. , 2022. "Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Christina M. Termini & Amara Pang & Tiancheng Fang & Martina Roos & Vivian Y. Chang & Yurun Zhang & Nicollette J. Setiawan & Lia Signaevskaia & Michelle Li & Mindy M. Kim & Orel Tabibi & Paulina K. Li, 2021. "Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Yang Liu & Qi Chen & Hyun-Woo Jeong & Bong Ihn Koh & Emma C. Watson & Cong Xu & Martin Stehling & Bin Zhou & Ralf H. Adams, 2022. "A specialized bone marrow microenvironment for fetal haematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Raymond K. H. Yip & Joel S. Rimes & Bianca D. Capaldo & François Vaillant & Kellie A. Mouchemore & Bhupinder Pal & Yunshun Chen & Elliot Surgenor & Andrew J. Murphy & Robin L. Anderson & Gordon K. Smy, 2021. "Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    5. Young-Woong Kim & Greta Zara & HyunJun Kang & Sergio Branciamore & Denis O’Meally & Yuxin Feng & Chia-Yi Kuan & Yingjun Luo & Michael S. Nelson & Alex B. Brummer & Russell Rockne & Zhen Bouman Chen & , 2022. "Integration of single-cell transcriptomes and biological function reveals distinct behavioral patterns in bone marrow endothelium," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Runfeng Miao & Harim Chun & Xing Feng & Ana Cordeiro Gomes & Jungmin Choi & João P. Pereira, 2022. "Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Yoshiki Omatsu & Shota Aiba & Tomonori Maeta & Kei Higaki & Kazunari Aoki & Hitomi Watanabe & Gen Kondoh & Riko Nishimura & Shu Takeda & Ung-il Chung & Takashi Nagasawa, 2022. "Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Xianzhu Zhang & Wei Jiang & Chang Xie & Xinyu Wu & Qian Ren & Fei Wang & Xilin Shen & Yi Hong & Hongwei Wu & Youguo Liao & Yi Zhang & Renjie Liang & Wei Sun & Yuqing Gu & Tao Zhang & Yishan Chen & Wei, 2022. "Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Alicia Villatoro & Vincent Cuminetti & Aurora Bernal & Carlos Torroja & Itziar Cossío & Alberto Benguría & Marc Ferré & Joanna Konieczny & Enrique Vázquez & Andrea Rubio & Peter Utnes & Almudena Tello, 2023. "Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    11. Yuki Matsushita & Jialin Liu & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Mizuki Nagata & Yuki Arai & Wanida Ono & Kouhei Yamamoto & Thomas L. Saunders & Joshua D. Welch & Noriaki Ono, 2023. "Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    12. Joschka Heil & Victor Olsavszky & Katrin Busch & Kay Klapproth & Carolina Torre & Carsten Sticht & Kajetan Sandorski & Johannes Hoffmann & Hiltrud Schönhaber & Johanna Zierow & Manuel Winkler & Christ, 2021. "Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    13. Tiago C. Luis & Nikolaos Barkas & Joana Carrelha & Alice Giustacchini & Stefania Mazzi & Ruggiero Norfo & Bishan Wu & Affaf Aliouat & Jose A. Guerrero & Alba Rodriguez-Meira & Tiphaine Bouriez-Jones &, 2023. "Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Taichi Nakatani & Tatsuki Sugiyama & Yoshiki Omatsu & Hitomi Watanabe & Gen Kondoh & Takashi Nagasawa, 2023. "Ebf3+ niche-derived CXCL12 is required for the localization and maintenance of hematopoietic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Jia Cao & Ling Jin & Zi-Qi Yan & Xiao-Kai Wang & You-You Li & Zun Wang & Yi-Wei Liu & Hong-Ming Li & Zhe Guan & Ze-Hui He & Jiang-Shan Gong & Jiang-Hua Liu & Hao Yin & Yi-Juan Tan & Chun-Gu Hong & Shi, 2023. "Reassessing endothelial-to-mesenchymal transition in mouse bone marrow: insights from lineage tracing models," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Qiang Zhao & Young-Min Han & Ping Song & Zhixue Liu & Zuyi Yuan & Ming-Hui Zou, 2022. "Endothelial cell-specific expression of serine/threonine kinase 11 modulates dendritic cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Xue Zhong & Nagesh Peddada & Jianhui Wang & James J. Moresco & Xiaowei Zhan & John M. Shelton & Jeffrey A. SoRelle & Katie Keller & Danielle Renee Lazaro & Eva Marie Y. Moresco & Jin Huk Choi & Bruce , 2023. "OVOL2 sustains postnatal thymic epithelial cell identity," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    18. Yinghui Li & Mei He & Wenshan Zhang & Wei Liu & Hui Xu & Ming Yang & Hexiao Zhang & Haiwei Liang & Wenjing Li & Zhaozhao Wu & Weichao Fu & Shiqi Xu & Xiaolei Liu & Sibin Fan & Liwei Zhou & Chaoqun Wan, 2023. "Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Jialiang S. Wang & Tushar Kamath & Courtney M. Mazur & Fatemeh Mirzamohammadi & Daniel Rotter & Hironori Hojo & Christian D. Castro & Nicha Tokavanich & Rushi Patel & Nicolas Govea & Tetsuya Enishi & , 2021. "Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    20. Hyuek Jong Lee & Jueun Lee & Myung Jin Yang & Young-Chan Kim & Seon Pyo Hong & Jung Mo Kim & Geum-Sook Hwang & Gou Young Koh, 2023. "Endothelial cell-derived stem cell factor promotes lipid accumulation through c-Kit-mediated increase of lipogenic enzymes in brown adipocytes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37791-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.