IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v495y2013i7440d10.1038_nature11926.html
   My bibliography  Save this article

CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance

Author

Listed:
  • Adam Greenbaum

    (Washington University School of Medicine)

  • Yen-Michael S. Hsu

    (Washington University School of Medicine)

  • Ryan B. Day

    (Washington University School of Medicine)

  • Laura G. Schuettpelz

    (Washington University School of Medicine)

  • Matthew J. Christopher

    (Washington University School of Medicine)

  • Joshua N. Borgerding

    (Washington University School of Medicine)

  • Takashi Nagasawa

    (Institute for Frontier Medical Sciences, Kyoto University
    Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology, Tokyo 102-0075, Japan)

  • Daniel C. Link

    (Washington University School of Medicine)

Abstract

Targeted deletion of the chemokine Cxcl12 in different bone marrow stromal cell populations shows that distinct niches exist in the bone marrow for haematopoietic stem cells and lineage-committed progenitors.

Suggested Citation

  • Adam Greenbaum & Yen-Michael S. Hsu & Ryan B. Day & Laura G. Schuettpelz & Matthew J. Christopher & Joshua N. Borgerding & Takashi Nagasawa & Daniel C. Link, 2013. "CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance," Nature, Nature, vol. 495(7440), pages 227-230, March.
  • Handle: RePEc:nat:nature:v:495:y:2013:i:7440:d:10.1038_nature11926
    DOI: 10.1038/nature11926
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11926
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trent D. Hall & Hyunjin Kim & Mahmoud Dabbah & Jacquelyn A. Myers & Jeremy Chase Crawford & Antonio Morales-Hernandez & Claire E. Caprio & Pramika Sriram & Emilia Kooienga & Marta Derecka & Esther A. , 2022. "Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Jia Cao & Ling Jin & Zi-Qi Yan & Xiao-Kai Wang & You-You Li & Zun Wang & Yi-Wei Liu & Hong-Ming Li & Zhe Guan & Ze-Hui He & Jiang-Shan Gong & Jiang-Hua Liu & Hao Yin & Yi-Juan Tan & Chun-Gu Hong & Shi, 2023. "Reassessing endothelial-to-mesenchymal transition in mouse bone marrow: insights from lineage tracing models," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Runfeng Miao & Harim Chun & Xing Feng & Ana Cordeiro Gomes & Jungmin Choi & João P. Pereira, 2022. "Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Christina M. Termini & Amara Pang & Tiancheng Fang & Martina Roos & Vivian Y. Chang & Yurun Zhang & Nicollette J. Setiawan & Lia Signaevskaia & Michelle Li & Mindy M. Kim & Orel Tabibi & Paulina K. Li, 2021. "Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    5. Yoshiki Omatsu & Shota Aiba & Tomonori Maeta & Kei Higaki & Kazunari Aoki & Hitomi Watanabe & Gen Kondoh & Riko Nishimura & Shu Takeda & Ung-il Chung & Takashi Nagasawa, 2022. "Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Adrienne Anginot & Julie Nguyen & Zeina Abou Nader & Vincent Rondeau & Amélie Bonaud & Maria Kalogeraki & Antoine Boutin & Julia P. Lemos & Valeria Bisio & Joyce Koenen & Lea Hanna Doumit Sakr & Amand, 2023. "WHIM Syndrome-linked CXCR4 mutations drive osteoporosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Yang Liu & Qi Chen & Hyun-Woo Jeong & Bong Ihn Koh & Emma C. Watson & Cong Xu & Martin Stehling & Bin Zhou & Ralf H. Adams, 2022. "A specialized bone marrow microenvironment for fetal haematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Kiyoka Saito & Mark Garde & Terumasa Umemoto & Natsumi Miharada & Julia Sjöberg & Valgardur Sigurdsson & Haruki Shirozu & Shunsuke Kamei & Visnja Radulovic & Mitsuyoshi Suzuki & Satoshi Nakano & Stefa, 2024. "Lipoprotein metabolism mediates hematopoietic stem cell responses under acute anemic conditions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Yuki Matsushita & Jialin Liu & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Mizuki Nagata & Yuki Arai & Wanida Ono & Kouhei Yamamoto & Thomas L. Saunders & Joshua D. Welch & Noriaki Ono, 2023. "Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:495:y:2013:i:7440:d:10.1038_nature11926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.