IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37743-y.html
   My bibliography  Save this article

Non-solvent post-modifications with volatile reagents for remarkably porous ketone functionalized polymers of intrinsic microporosity

Author

Listed:
  • Sirinapa Wongwilawan

    (Korea Advanced Institute of Science and Technology (KAIST)
    PTT Global Chemical Public Company Limited)

  • Thien S. Nguyen

    (King Abdullah University of Science and Technology (KAUST)
    Advanced Membranes & Porous Materials Center, PSE, KAUST
    KAUST Catalysis Center, PSE, KAUST)

  • Thi Phuong Nga Nguyen

    (King Abdullah University of Science and Technology (KAUST))

  • Abdulhadi Alhaji

    (Advanced Membranes & Porous Materials Center, PSE, KAUST)

  • Wonki Lim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Yeongran Hong

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Jin Su Park

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Mert Atilhan

    (Western Michigan University)

  • Bumjoon J. Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Mohamed Eddaoudi

    (Advanced Membranes & Porous Materials Center, PSE, KAUST)

  • Cafer T. Yavuz

    (Korea Advanced Institute of Science and Technology (KAIST)
    King Abdullah University of Science and Technology (KAUST)
    Advanced Membranes & Porous Materials Center, PSE, KAUST
    KAUST Catalysis Center, PSE, KAUST)

Abstract

Chemical modifications of porous materials almost always result in loss of structural integrity, porosity, solubility, or stability. Previous attempts, so far, have not allowed any promising trend to unravel, perhaps because of the complexity of porous network frameworks. But the soluble porous polymers, the polymers of intrinsic microporosity, provide an excellent platform to develop a universal strategy for effective modification of functional groups for current demands in advanced applications. Here, we report complete transformation of PIM-1 nitriles into four previously inaccessible functional groups – ketones, alcohols, imines, and hydrazones – in a single step using volatile reagents and through a counter-intuitive non-solvent approach that enables surface area preservation. The modifications are simple, scalable, reproducible, and give record surface areas for modified PIM-1s despite at times having to pass up to two consecutive post-synthetic transformations. This unconventional dual-mode strategy offers valuable directions for chemical modification of porous materials.

Suggested Citation

  • Sirinapa Wongwilawan & Thien S. Nguyen & Thi Phuong Nga Nguyen & Abdulhadi Alhaji & Wonki Lim & Yeongran Hong & Jin Su Park & Mert Atilhan & Bumjoon J. Kim & Mohamed Eddaoudi & Cafer T. Yavuz, 2023. "Non-solvent post-modifications with volatile reagents for remarkably porous ketone functionalized polymers of intrinsic microporosity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37743-y
    DOI: 10.1038/s41467-023-37743-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37743-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37743-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omid T. Qazvini & Ravichandar Babarao & Shane G. Telfer, 2021. "Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Kyungmin Min & Woosung Choi & Chaehoon Kim & Minkee Choi, 2018. "Oxidation-stable amine-containing adsorbents for carbon dioxide capture," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Miranda J. Baran & Mark E. Carrington & Swagat Sahu & Artem Baskin & Junhua Song & Michael A. Baird & Kee Sung Han & Karl T. Mueller & Simon J. Teat & Stephen M. Meckler & Chengyin Fu & David Prenderg, 2021. "Diversity-oriented synthesis of polymer membranes with ion solvation cages," Nature, Nature, vol. 592(7853), pages 225-231, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Gu & Jia-Jia Zheng & Ken-ichi Otake & Shigeyoshi Sakaki & Hirotaka Ashitani & Yoshiki Kubota & Shogo Kawaguchi & Ming-Shui Yao & Ping Wang & Ying Wang & Fengting Li & Susumu Kitagawa, 2023. "Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
    3. Ga, Seongbin & An, Nahyeon & Lee, Gi Yeol & Joo, Chonghyo & Kim, Junghwan, 2024. "Economic analysis with multiscale high-throughput screening for covalent organic framework adsorbents in ammonia-based green hydrogen separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Ga, Seongbin & An, Nahyeon & Lee, Gi Yeol & Joo, Chonghyo & Kim, Junghwan, 2024. "Multidisciplinary high-throughput screening of metal–organic framework for ammonia-based green hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Hu, Xiayi (Eric) & Liu, Libin & Luo, Xiao & Xiao, Gongkui & Shiko, Elenica & Zhang, Rui & Fan, Xianfeng & Zhou, Yefeng & Liu, Yang & Zeng, Zhaogang & Li, Chao'en, 2020. "A review of N-functionalized solid adsorbents for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 260(C).
    7. Shi, Jinsong & Xu, Jianguo & Cui, Hongmin & Yan, Nanfu & Zou, Jiyong & Liu, Yuewei & You, Shengyong, 2023. "Synthesis of highly porous N-doped hollow carbon nanospheres with a combined soft template-chemical activation method for CO2 capture," Energy, Elsevier, vol. 280(C).
    8. Sanghyun Bae & Thomas Moehl & Erin Service & Minjung Kim & Pardis Adams & Zhenbin Wang & Yuri Choi & Jungki Ryu & S. David Tilley, 2024. "A hole-selective hybrid TiO2 layer for stable and low-cost photoanodes in solar water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Gao, Jubao & Liu, Yida & Hoshino, Yu & Inoue, Gen, 2019. "Amine-containing nanogel particles supported on porous carriers for enhanced carbon dioxide capture," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Yang, Chuanruo & Du, Zhilin & Jin, Junsu & Chen, Jian & Mi, Jianguo, 2020. "Epoxide-functionalized tetraethylenepentamine encapsulated into porous copolymer spheres for CO2 capture with superior stability," Applied Energy, Elsevier, vol. 260(C).
    11. Hengcong Huang & Luyao Wang & Xiaoyu Zhang & Hongshuo Zhao & Yifan Gu, 2022. "CO 2 -Selective Capture from Light Hydrocarbon Mixtures by Metal-Organic Frameworks: A Review," Clean Technol., MDPI, vol. 5(1), pages 1-24, December.
    12. Zhaoqiang Zhang & Yinlin Chen & Kungang Chai & Chengjun Kang & Shing Bo Peh & He Li & Junyu Ren & Xiansong Shi & Xue Han & Catherine Dejoie & Sarah J. Day & Sihai Yang & Dan Zhao, 2023. "Temperature-dependent rearrangement of gas molecules in ultramicroporous materials for tunable adsorption of CO2 and C2H2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Ziyang Lu & Huijun Yang & Yong Guo & Hongxin Lin & Peizhao Shan & Shichao Wu & Ping He & Yong Yang & Quan-Hong Yang & Haoshen Zhou, 2024. "Consummating ion desolvation in hard carbon anodes for reversible sodium storage," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37743-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.