IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20489-2.html
   My bibliography  Save this article

Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework

Author

Listed:
  • Omid T. Qazvini

    (Massey University
    The University of Manchester)

  • Ravichandar Babarao

    (RMIT University
    Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing)

  • Shane G. Telfer

    (Massey University)

Abstract

Efficient and sustainable methods for carbon dioxide capture are highly sought after. Mature technologies involve chemical reactions that absorb CO2, but they have many drawbacks. Energy-efficient alternatives may be realised by porous physisorbents with void spaces that are complementary in size and electrostatic potential to molecular CO2. Here, we present a robust, recyclable and inexpensive adsorbent termed MUF-16. This metal-organic framework captures CO2 with a high affinity in its one-dimensional channels, as determined by adsorption isotherms, X-ray crystallography and density-functional theory calculations. Its low affinity for other competing gases delivers high selectivity for the adsorption of CO2 over methane, acetylene, ethylene, ethane, propylene and propane. For equimolar mixtures of CO2/CH4 and CO2/C2H2, the selectivity is 6690 and 510, respectively. Breakthrough gas separations under dynamic conditions benefit from short time lags in the elution of the weakly-adsorbed component to deliver high-purity hydrocarbon products, including pure methane and acetylene.

Suggested Citation

  • Omid T. Qazvini & Ravichandar Babarao & Shane G. Telfer, 2021. "Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20489-2
    DOI: 10.1038/s41467-020-20489-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20489-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20489-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifan Gu & Jia-Jia Zheng & Ken-ichi Otake & Shigeyoshi Sakaki & Hirotaka Ashitani & Yoshiki Kubota & Shogo Kawaguchi & Ming-Shui Yao & Ping Wang & Ying Wang & Fengting Li & Susumu Kitagawa, 2023. "Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Shi, Jinsong & Xu, Jianguo & Cui, Hongmin & Yan, Nanfu & Zou, Jiyong & Liu, Yuewei & You, Shengyong, 2023. "Synthesis of highly porous N-doped hollow carbon nanospheres with a combined soft template-chemical activation method for CO2 capture," Energy, Elsevier, vol. 280(C).
    4. Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
    5. Ga, Seongbin & An, Nahyeon & Lee, Gi Yeol & Joo, Chonghyo & Kim, Junghwan, 2024. "Economic analysis with multiscale high-throughput screening for covalent organic framework adsorbents in ammonia-based green hydrogen separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Hengcong Huang & Luyao Wang & Xiaoyu Zhang & Hongshuo Zhao & Yifan Gu, 2022. "CO 2 -Selective Capture from Light Hydrocarbon Mixtures by Metal-Organic Frameworks: A Review," Clean Technol., MDPI, vol. 5(1), pages 1-24, December.
    7. Zhaoqiang Zhang & Yinlin Chen & Kungang Chai & Chengjun Kang & Shing Bo Peh & He Li & Junyu Ren & Xiansong Shi & Xue Han & Catherine Dejoie & Sarah J. Day & Sihai Yang & Dan Zhao, 2023. "Temperature-dependent rearrangement of gas molecules in ultramicroporous materials for tunable adsorption of CO2 and C2H2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Sirinapa Wongwilawan & Thien S. Nguyen & Thi Phuong Nga Nguyen & Abdulhadi Alhaji & Wonki Lim & Yeongran Hong & Jin Su Park & Mert Atilhan & Bumjoon J. Kim & Mohamed Eddaoudi & Cafer T. Yavuz, 2023. "Non-solvent post-modifications with volatile reagents for remarkably porous ketone functionalized polymers of intrinsic microporosity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20489-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.