IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37369-0.html
   My bibliography  Save this article

Bacterial outer membrane vesicle based versatile nanosystem boosts the efferocytosis blockade triggered tumor-specific immunity

Author

Listed:
  • Wan-Ru Zhuang

    (Beijing Institute of Technology)

  • Yunfeng Wang

    (Beijing Institute of Technology)

  • Weidong Nie

    (Beijing Institute of Technology)

  • Yao Lei

    (Beijing Institute of Technology)

  • Chao Liang

    (Beijing Institute of Technology)

  • Jiaqi He

    (Beijing Institute of Technology)

  • Liping Zuo

    (Beijing Institute of Technology)

  • Li-Li Huang

    (Beijing Institute of Technology)

  • Hai-Yan Xie

    (Beijing Institute of Technology)

Abstract

Efferocytosis inhibition is emerging as an attractive strategy for antitumor immune therapy because of the subsequent leak of abundant immunogenic contents. However, the practical efficacy is seriously impeded by the immunosuppressive tumor microenvironments. Here, we construct a versatile nanosystem that can not only inhibit the efferocytosis but also boost the following antitumor immunity. MerTK inhibitor UNC2025 is loaded into the bacterial outer membrane vesicles (OMVs), which are then modified with maleimide (mU@OMVs). The prepared mU@OMVs effectively inhibits the efferocytosis by promoting the uptake while preventing the MerTK phosphorylation of tumor associated macrophages, and then captures the released antigens through forming universal thioether bonds. The obtained in situ vaccine effectively transfers to lymph nodes by virtue of the intrinsic features of OMVs, and then provokes intense immune responses that can efficiently prevent the growth, metastasis and recurrence of tumors in mice, providing a generalizable strategy for cancer immunotherapy.

Suggested Citation

  • Wan-Ru Zhuang & Yunfeng Wang & Weidong Nie & Yao Lei & Chao Liang & Jiaqi He & Liping Zuo & Li-Li Huang & Hai-Yan Xie, 2023. "Bacterial outer membrane vesicle based versatile nanosystem boosts the efferocytosis blockade triggered tumor-specific immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37369-0
    DOI: 10.1038/s41467-023-37369-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37369-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37369-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiang Yu & Yanfeng Dai & Yifan Zhao & Shuhong Qi & Lei Liu & Lisen Lu & Qingming Luo & Zhihong Zhang, 2020. "Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Tingting Wang & Dangge Wang & Haijun Yu & Bing Feng & Fangyuan Zhou & Hanwu Zhang & Lei Zhou & Shi Jiao & Yaping Li, 2018. "A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Paola Scaffidi & Tom Misteli & Marco E. Bianchi, 2002. "Release of chromatin protein HMGB1 by necrotic cells triggers inflammation," Nature, Nature, vol. 418(6894), pages 191-195, July.
    4. Oh Youn Kim & Hyun Taek Park & Nhung Thi Hong Dinh & Seng Jin Choi & Jaewook Lee & Ji Hyun Kim & Seung-Woo Lee & Yong Song Gho, 2017. "Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yannan Yang & Shiwei Chen & Min Zhang & Yiru Shi & Jiangqi Luo & Yiming Huang & Zhengying Gu & Wenli Hu & Ye Zhang & Xiao He & Chengzhong Yu, 2024. "Mesoporous nanoperforators as membranolytic agents via nano- and molecular-scale multi-patterning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Nele De Langhe & Sofie Van Dorpe & Niké Guilbert & Amélie Vander Cruyssen & Quentin Roux & Sarah Deville & Sándor Dedeyne & Philippe Tummers & Hannelore Denys & Linos Vandekerckhove & Olivier De Wever, 2024. "Mapping bacterial extracellular vesicle research: insights, best practices and knowledge gaps," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Kuo-Tung Tang & Tsu-Yi Hsieh & Ya-Hsuan Chao & Meng-Xian Lin & Yi-Hsing Chen & Der-Yuan Chen & Chi-Chen Lin, 2017. "Plasma levels of high-mobility group box 1 and soluble receptor for advanced glycation end products in primary antiphospholipid antibody syndrome patients," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-13, May.
    5. Jiaqi Meng & Yanlin Lv & Weier Bao & Zihui Meng & Shuang Wang & Yuanbin Wu & Shuping Li & Zhouguang Jiao & Zhiyuan Tian & Guanghui Ma & Wei Wei, 2023. "Generation of whole tumor cell vaccine for on-demand manipulation of immune responses against cancer under near-infrared laser irradiation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Meihua Jin & Hiroki Shiwaku & Hikari Tanaka & Takayuki Obita & Sakurako Ohuchi & Yuki Yoshioka & Xiaocen Jin & Kanoh Kondo & Kyota Fujita & Hidenori Homma & Kazuyuki Nakajima & Mineyuki Mizuguchi & Hi, 2021. "Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    7. Yuxin Guo & Shao-Zhe Wang & Xinping Zhang & Hao-Ran Jia & Ya-Xuan Zhu & Xiaodong Zhang & Ge Gao & Yao-Wen Jiang & Chengcheng Li & Xiaokai Chen & Shun-Yu Wu & Yi Liu & Fu-Gen Wu, 2022. "In situ generation of micrometer-sized tumor cell-derived vesicles as autologous cancer vaccines for boosting systemic immune responses," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Lu Zhang & Jianjun Han & Huiyong Wu & Xiaohong Liang & Jianxin Zhang & Jian Li & Li Xie & Yinfa Xie & Xiugui Sheng & Jinming Yu, 2014. "The Association of HMGB1 Expression with Clinicopathological Significance and Prognosis in Hepatocellular Carcinoma: A Meta-Analysis and Literature Review," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    9. Malisa Vittoria Mantonico & Federica Leo & Giacomo Quilici & Liam Sean Colley & Francesco Marchis & Massimo Crippa & Rosanna Mezzapelle & Tim Schulte & Chiara Zucchelli & Chiara Pastorello & Camilla C, 2024. "The acidic intrinsically disordered region of the inflammatory mediator HMGB1 mediates fuzzy interactions with CXCL12," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Danyu Wang & Jingwen Liu & Jie Duan & Hua Yi & Junjie Liu & Haiwei Song & Zhenzhong Zhang & Jinjin Shi & Kaixiang Zhang, 2023. "Enrichment and sensing tumor cells by embedded immunomodulatory DNA hydrogel to inhibit postoperative tumor recurrence," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Lulu Ren & Jianqin Wan & Xiaoyan Li & Jie Yao & Yan Ma & Fanchao Meng & Shusen Zheng & Weidong Han & Hangxiang Wang, 2024. "Mitochondrial rewiring with small-molecule drug-free nanoassemblies unleashes anticancer immunity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37369-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.