IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03915-4.html
   My bibliography  Save this article

A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors

Author

Listed:
  • Tingting Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dangge Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haijun Yu

    (Chinese Academy of Sciences)

  • Bing Feng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Fangyuan Zhou

    (Chinese Academy of Sciences)

  • Hanwu Zhang

    (Chinese Academy of Sciences)

  • Lei Zhou

    (Chinese Academy of Sciences)

  • Shi Jiao

    (Chinese Academy of Sciences)

  • Yaping Li

    (Chinese Academy of Sciences)

Abstract

Vaccines to induce effective and sustained antitumor immunity have great potential for postoperative cancer therapy. However, a robust cancer vaccine simultaneously eliciting tumor-specific immunity and abolishing immune resistance continues to be a challenge. Here we present a personalized cancer vaccine (PVAX) for postsurgical immunotherapy. PVAX is developed by encapsulating JQ1 (a BRD4 inhibitor) and indocyanine green (ICG) co-loaded tumor cells with a hydrogel matrix. Activation of PVAX by 808 nm NIR laser irradiation significantly inhibits the tumor relapse by promoting the maturation of dendritic cells and eliciting tumor infiltration of cytotoxic T lymphocytes. A mechanical study reveals that NIR light-triggered antigen release and JQ1-mediated PD-L1 checkpoint blockade cumulatively contribute to the satisfied therapeutic effect. Furthermore, PVAX prepared from the autologous tumor cells induces patient-specific memory immune response to prevent tumor recurrence and metastasis. The PVAX model might provide novel insights for postoperative immunotherapy.

Suggested Citation

  • Tingting Wang & Dangge Wang & Haijun Yu & Bing Feng & Fangyuan Zhou & Hanwu Zhang & Lei Zhou & Shi Jiao & Yaping Li, 2018. "A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03915-4
    DOI: 10.1038/s41467-018-03915-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03915-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03915-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxin Guo & Shao-Zhe Wang & Xinping Zhang & Hao-Ran Jia & Ya-Xuan Zhu & Xiaodong Zhang & Ge Gao & Yao-Wen Jiang & Chengcheng Li & Xiaokai Chen & Shun-Yu Wu & Yi Liu & Fu-Gen Wu, 2022. "In situ generation of micrometer-sized tumor cell-derived vesicles as autologous cancer vaccines for boosting systemic immune responses," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Wan-Ru Zhuang & Yunfeng Wang & Weidong Nie & Yao Lei & Chao Liang & Jiaqi He & Liping Zuo & Li-Li Huang & Hai-Yan Xie, 2023. "Bacterial outer membrane vesicle based versatile nanosystem boosts the efferocytosis blockade triggered tumor-specific immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Jiaqi Meng & Yanlin Lv & Weier Bao & Zihui Meng & Shuang Wang & Yuanbin Wu & Shuping Li & Zhouguang Jiao & Zhiyuan Tian & Guanghui Ma & Wei Wei, 2023. "Generation of whole tumor cell vaccine for on-demand manipulation of immune responses against cancer under near-infrared laser irradiation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Danyu Wang & Jingwen Liu & Jie Duan & Hua Yi & Junjie Liu & Haiwei Song & Zhenzhong Zhang & Jinjin Shi & Kaixiang Zhang, 2023. "Enrichment and sensing tumor cells by embedded immunomodulatory DNA hydrogel to inhibit postoperative tumor recurrence," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03915-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.