IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13929-1.html
   My bibliography  Save this article

Combined burden and functional impact tests for cancer driver discovery using DriverPower

Author

Listed:
  • Shimin Shuai

    (University of Toronto
    Computational Biology Program, Ontario Institute for Cancer Research)

  • Steven Gallinger

    (Toronto General Hospital
    Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital)

  • Lincoln D. Stein

    (University of Toronto
    Computational Biology Program, Ontario Institute for Cancer Research)

Abstract

The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower’s background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery.

Suggested Citation

  • Shimin Shuai & Steven Gallinger & Lincoln D. Stein, 2020. "Combined burden and functional impact tests for cancer driver discovery using DriverPower," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13929-1
    DOI: 10.1038/s41467-019-13929-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13929-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13929-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Eleanor L. Woodward & Minjun Yang & Larissa H. Moura-Castro & Hilda Bos & Rebeqa Gunnarsson & Linda Olsson-Arvidsson & Diana C. J. Spierings & Anders Castor & Nicolas Duployez & Marketa Zaliova & Jan , 2023. "Clonal origin and development of high hyperdiploidy in childhood acute lymphoblastic leukaemia," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Sebastian Carrasco Pro & Heather Hook & David Bray & Daniel Berenzy & Devlin Moyer & Meimei Yin & Adam Thomas Labadorf & Ryan Tewhey & Trevor Siggers & Juan Ignacio Fuxman Bass, 2023. "Widespread perturbation of ETS factor binding sites in cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13929-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.