IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v604y2022i7907d10.1038_s41586-022-04606-3.html
   My bibliography  Save this article

Engineered jumpers overcome biological limits via work multiplication

Author

Listed:
  • Elliot W. Hawkes

    (University of California, Santa Barbara)

  • Charles Xiao

    (University of California, Santa Barbara)

  • Richard-Alexandre Peloquin

    (Disney Research)

  • Christopher Keeley

    (University of California, Santa Barbara)

  • Matthew R. Begley

    (University of California, Santa Barbara)

  • Morgan T. Pope

    (Disney Research)

  • Günter Niemeyer

    (California Institute of Technology)

Abstract

For centuries, scientists have explored the limits of biological jump height1,2, and for decades, engineers have designed jumping machines3–18 that often mimicked or took inspiration from biological jumpers. Despite these efforts, general analyses are missing that compare the energetics of biological and engineered jumpers across scale. Here we show how biological and engineered jumpers have key differences in their jump energetics. The jump height of a biological jumper is limited by the work its linear motor (muscle) can produce in a single stroke. By contrast, the jump height of an engineered device can be far greater because its ratcheted or rotary motor can ‘multiply work’ during repeated strokes or rotations. As a consequence of these differences in energy production, biological and engineered jumpers should have divergent designs for maximizing jump height. Following these insights, we created a device that can jump over 30 metres high, to our knowledge far higher than previous engineered jumpers and over an order of magnitude higher than the best biological jumpers. Our work advances the understanding of jumping, shows a new level of performance, and underscores the importance of considering the differences between engineered and biological systems.

Suggested Citation

  • Elliot W. Hawkes & Charles Xiao & Richard-Alexandre Peloquin & Christopher Keeley & Matthew R. Begley & Morgan T. Pope & Günter Niemeyer, 2022. "Engineered jumpers overcome biological limits via work multiplication," Nature, Nature, vol. 604(7907), pages 657-661, April.
  • Handle: RePEc:nat:nature:v:604:y:2022:i:7907:d:10.1038_s41586-022-04606-3
    DOI: 10.1038/s41586-022-04606-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04606-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04606-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minseok Gwon & Dongjin Kim & Baekgyeom Kim & Seungyong Han & Daeshik Kang & Je-Sung Koh, 2023. "Scale dependence in hydrodynamic regime for jumping on water," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yuhang Dai & Minfei Li & Bingqiang Ji & Xiong Wang & Siyan Yang & Peng Yu & Steven Wang & Chonglei Hao & Zuankai Wang, 2023. "Liquid metal droplets bouncing higher on thicker water layer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:604:y:2022:i:7907:d:10.1038_s41586-022-04606-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.