IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36995-y.html
   My bibliography  Save this article

Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein

Author

Listed:
  • Patrick O. Byrne

    (The University of Texas at Austin)

  • Brian E. Fisher

    (National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • David R. Ambrozak

    (National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Elizabeth G. Blade

    (The University of Texas at Austin)

  • Yaroslav Tsybovsky

    (Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research)

  • Barney S. Graham

    (National Institute of Allergy and Infectious Diseases, National Institutes of Health
    Morehouse School of Medicine)

  • Jason S. McLellan

    (The University of Texas at Austin)

  • Rebecca J. Loomis

    (National Institute of Allergy and Infectious Diseases, National Institutes of Health
    GSK Global Health R&D Vaccines (GVGH))

Abstract

Nipah virus (NiV) is a pathogenic paramyxovirus that causes fatal encephalitis in humans. Two envelope glycoproteins, the attachment protein (G/RBP) and fusion protein (F), facilitate entry into host cells. Due to its vital role, NiV F presents an attractive target for developing vaccines and therapeutics. Several neutralization-sensitive epitopes on the NiV F apex have been described, however the antigenicity of most of the F protein’s surface remains uncharacterized. Here, we immunize mice with prefusion-stabilized NiV F and isolate ten monoclonal antibodies that neutralize pseudotyped virus. Cryo-electron microscopy reveals eight neutralization-sensitive epitopes on NiV F, four of which have not previously been described. Novel sites span the lateral and basal faces of NiV F, expanding the known library of vulnerable epitopes. Seven of ten antibodies bind the Hendra virus (HeV) F protein. Multiple sequence alignment suggests that some of these newly identified neutralizing antibodies may also bind F proteins across the Henipavirus genus. This work identifies new epitopes as targets for therapeutics, provides a molecular basis for NiV neutralization, and lays a foundation for development of new cross-reactive antibodies targeting Henipavirus F proteins.

Suggested Citation

  • Patrick O. Byrne & Brian E. Fisher & David R. Ambrozak & Elizabeth G. Blade & Yaroslav Tsybovsky & Barney S. Graham & Jason S. McLellan & Rebecca J. Loomis, 2023. "Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36995-y
    DOI: 10.1038/s41467-023-36995-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36995-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36995-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kizzmekia S. Corbett & Darin K. Edwards & Sarah R. Leist & Olubukola M. Abiona & Seyhan Boyoglu-Barnum & Rebecca A. Gillespie & Sunny Himansu & Alexandra Schäfer & Cynthia T. Ziwawo & Anthony T. DiPia, 2020. "SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness," Nature, Nature, vol. 586(7830), pages 567-571, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathrin Leppek & Gun Woo Byeon & Wipapat Kladwang & Hannah K. Wayment-Steele & Craig H. Kerr & Adele F. Xu & Do Soon Kim & Ved V. Topkar & Christian Choe & Daphna Rothschild & Gerald C. Tiu & Roger We, 2022. "Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    2. Neeltje van Doremalen & Jonathan E. Schulz & Danielle R. Adney & Taylor A. Saturday & Robert J. Fischer & Claude Kwe Yinda & Nazia Thakur & Joseph Newman & Marta Ulaszewska & Sandra Belij-Rammerstorfe, 2022. "ChAdOx1 nCoV-19 (AZD1222) or nCoV-19-Beta (AZD2816) protect Syrian hamsters against Beta Delta and Omicron variants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Wenjun Zhu & Ting Wei & Yuchun Xu & Qiutong Jin & Yu Chao & Jiaqi Lu & Jun Xu & Jiafei Zhu & Xiaoying Yan & Muchao Chen & Qian Chen & Zhuang Liu, 2024. "Non-invasive transdermal delivery of biomacromolecules with fluorocarbon-modified chitosan for melanoma immunotherapy and viral vaccines," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Zhangli Su & Ida Monshaugen & Briana Wilson & Fengbin Wang & Arne Klungland & Rune Ougland & Anindya Dutta, 2022. "TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Carlos Ávila-Nieto & Júlia Vergara-Alert & Pep Amengual-Rigo & Erola Ainsua-Enrich & Marco Brustolin & María Luisa Rodríguez de la Concepción & Núria Pedreño-Lopez & Jordi Rodon & Victor Urrea & Edwar, 2024. "Immunization with V987H-stabilized Spike glycoprotein protects K18-hACE2 mice and golden Syrian hamsters upon SARS-CoV-2 infection," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Zhenhao Fang & Lei Peng & Renata Filler & Kazushi Suzuki & Andrew McNamara & Qianqian Lin & Paul A. Renauer & Luojia Yang & Bridget Menasche & Angie Sanchez & Ping Ren & Qiancheng Xiong & Madison Stri, 2022. "Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Rafael R. G. Machado & Jordyn L. Walker & Dionna Scharton & Grace H. Rafael & Brooke M. Mitchell & Rachel A. Reyna & William M. Souza & Jianying Liu & David H. Walker & Jessica A. Plante & Kenneth S. , 2023. "Immunogenicity and efficacy of vaccine boosters against SARS-CoV-2 Omicron subvariant BA.5 in male Syrian hamsters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Geoffrey B. Hutchinson & Olubukola M. Abiona & Cynthia T. Ziwawo & Anne P. Werner & Daniel Ellis & Yaroslav Tsybovsky & Sarah R. Leist & Charis Palandjian & Ande West & Ethan J. Fritch & Nianshuang Wa, 2023. "Nanoparticle display of prefusion coronavirus spike elicits S1-focused cross-reactive antibody response against diverse coronavirus subgenera," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. David Chmielewski & Eric A. Wilson & Grigore Pintilie & Peng Zhao & Muyuan Chen & Michael F. Schmid & Graham Simmons & Lance Wells & Jing Jin & Abhishek Singharoy & Wah Chiu, 2023. "Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36995-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.