IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21652-z.html
   My bibliography  Save this article

MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope

Author

Listed:
  • Roman Schmidt

    (Abberior Instruments GmbH)

  • Tobias Weihs

    (Abberior Instruments GmbH)

  • Christian A. Wurm

    (Abberior Instruments GmbH
    Abberior GmbH)

  • Isabelle Jansen

    (Abberior Instruments GmbH)

  • Jasmin Rehman

    (Abberior GmbH)

  • Steffen J. Sahl

    (Max Planck Institute for Biophysical Chemistry)

  • Stefan W. Hell

    (Max Planck Institute for Biophysical Chemistry
    Max Planck Institute for Medical Research)

Abstract

The recently introduced minimal photon fluxes (MINFLUX) concept pushed the resolution of fluorescence microscopy to molecular dimensions. Initial demonstrations relied on custom made, specialized microscopes, raising the question of the method’s general availability. Here, we show that MINFLUX implemented with a standard microscope stand can attain 1–3 nm resolution in three dimensions, rendering fluorescence microscopy with molecule-scale resolution widely applicable. Advances, such as synchronized electro-optical and galvanometric beam steering and a stabilization that locks the sample position to sub-nanometer precision with respect to the stand, ensure nanometer-precise and accurate real-time localization of individually activated fluorophores. In our MINFLUX imaging of cell- and neurobiological samples, ~800 detected photons suffice to attain a localization precision of 2.2 nm, whereas ~2500 photons yield precisions

Suggested Citation

  • Roman Schmidt & Tobias Weihs & Christian A. Wurm & Isabelle Jansen & Jasmin Rehman & Steffen J. Sahl & Stefan W. Hell, 2021. "MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21652-z
    DOI: 10.1038/s41467-021-21652-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21652-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21652-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elias Amselem & Bo Broadwater & Tora Hävermark & Magnus Johansson & Johan Elf, 2023. "Real-time single-molecule 3D tracking in E. coli based on cross-entropy minimization," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21652-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.