IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36469-1.html
   My bibliography  Save this article

Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics

Author

Listed:
  • Xidan Wen

    (Nanjing University)

  • Rui Zhang

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences)

  • Yuxuan Hu

    (Nanjing University)

  • Luyan Wu

    (Nanjing University)

  • He Bai

    (Nanjing University)

  • Dongfan Song

    (Nanjing University)

  • Yanfeng Wang

    (Nanjing University)

  • Ruibing An

    (Nanjing University)

  • Jianhui Weng

    (Nanjing University)

  • Shuren Zhang

    (Nanjing University)

  • Rong Wang

    (Nanjing University)

  • Ling Qiu

    (Jiangsu Institute of Nuclear Medicine)

  • Jianguo Lin

    (Jiangsu Institute of Nuclear Medicine)

  • Guandao Gao

    (Nanjing University)

  • Hong Liu

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences)

  • Zijian Guo

    (Nanjing University)

  • Deju Ye

    (Nanjing University)

Abstract

Temporal control of delivery and release of drugs in tumors are important in improving therapeutic outcomes to patients. Here, we report a sequential stimuli-triggered in situ self-assembly and disassembly strategy to direct delivery and release of theranostic drugs in vivo. Using cisplatin as a model anticancer drug, we design a stimuli-responsive small-molecule cisplatin prodrug (P-CyPt), which undergoes extracellular alkaline phosphatase-triggered in situ self-assembly and succeeding intracellular glutathione-triggered disassembly process, allowing to enhance accumulation and elicit burst release of cisplatin in tumor cells. Compared with cisplatin, P-CyPt greatly improves antitumor efficacy while mitigates off-target toxicity in mice with subcutaneous HeLa tumors and orthotopic HepG2 liver tumors after systemic administration. Moreover, P-CyPt also produces activated near-infrared fluorescence (at 710 nm) and dual photoacoustic imaging signals (at 700 and 750 nm), permitting high sensitivity and spatial-resolution delineation of tumor foci and real-time monitoring of drug delivery and release in vivo. This strategy leverages the advantages offered by in situ self-assembly with those of intracellular disassembly, which may act as a general platform for the design of prodrugs capable of improving drug delivery for cancer theranostics.

Suggested Citation

  • Xidan Wen & Rui Zhang & Yuxuan Hu & Luyan Wu & He Bai & Dongfan Song & Yanfeng Wang & Ruibing An & Jianhui Weng & Shuren Zhang & Rong Wang & Ling Qiu & Jianguo Lin & Guandao Gao & Hong Liu & Zijian Gu, 2023. "Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36469-1
    DOI: 10.1038/s41467-023-36469-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36469-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36469-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Gao & Junfeng Shi & Dan Yuan & Bing Xu, 2012. "Imaging enzyme-triggered self-assembly of small molecules inside live cells," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    2. Michael Jenkyn-Bedford & Morgan L. Jones & Yasemin Baris & Karim P. M. Labib & Giuseppe Cannone & Joseph T. P. Yeeles & Tom D. Deegan, 2021. "A conserved mechanism for regulating replisome disassembly in eukaryotes," Nature, Nature, vol. 600(7890), pages 743-747, December.
    3. Hong-Wei An & Li-Li Li & Yi Wang & Ziqi Wang & Dayong Hou & Yao-Xin Lin & Sheng-Lin Qiao & Man-Di Wang & Chao Yang & Yong Cong & Yang Ma & Xiao-Xiao Zhao & Qian Cai & Wen-Ting Chen & Chu-Qi Lu & Wanha, 2019. "A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    4. Haoke Zhang & Xiaoyan Zheng & Ryan T. K. Kwok & Jia Wang & Nelson L. C. Leung & Lin Shi & Jing Zhi Sun & Zhiyong Tang & Jacky W. Y. Lam & Anjun Qin & Ben Zhong Tang, 2018. "In situ monitoring of molecular aggregation using circular dichroism," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Han Ren & Xiang-Zhong Zeng & Xiao-Xiao Zhao & Da-yong Hou & Haodong Yao & Muhammad Yaseen & Lina Zhao & Wan-hai Xu & Hao Wang & Li-Li Li, 2022. "A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing He & Feng Wang & Nina Y. Yao & Michael E. O’Donnell & Huilin Li, 2024. "Structures of the human leading strand Polε–PCNA holoenzyme," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Zita Fábián & Ellen S. Kakulidis & Ivo A. Hendriks & Ulrike Kühbacher & Nicolai B. Larsen & Marta Oliva-Santiago & Junhui Wang & Xueyuan Leng & A. Barbara Dirac-Svejstrup & Jesper Q. Svejstrup & Micha, 2024. "PARP1-dependent DNA-protein crosslink repair," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Da-Yong Hou & Dong-Bing Cheng & Ni-Yuan Zhang & Zhi-Jia Wang & Xing-Jie Hu & Xin Li & Mei-Yu Lv & Xiang-Peng Li & Ling-Rui Jian & Jin-Peng Ma & Taolei Sun & Zeng-Ying Qiao & Wanhai Xu & Hao Wang, 2024. "In vivo assembly enhanced binding effect augments tumor specific ferroptosis therapy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Agata Butryn & Julia F. Greiwe & Alessandro Costa, 2025. "Unidirectional MCM translocation away from ORC drives origin licensing," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    5. Yi Zhou & Peng Ke & Xiaoyan Bao & Honghui Wu & Yiyi Xia & Zhentao Zhang & Haiqing Zhong & Qi Dai & Linjie Wu & Tiantian Wang & Mengting Lin & Yaosheng Li & Xinchi Jiang & Qiyao Yang & Yiying Lu & Xinc, 2022. "Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Zhichun Xu & Jianrong Feng & Daqi Yu & Yunjing Huo & Xiaohui Ma & Wai Hei Lam & Zheng Liu & Xiang David Li & Toyotaka Ishibashi & Shangyu Dang & Yuanliang Zhai, 2023. "Synergism between CMG helicase and leading strand DNA polymerase at replication fork," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Daniel Ramírez Montero & Humberto Sánchez & Edo Veen & Theo Laar & Belén Solano & John F. X. Diffley & Nynke H. Dekker, 2023. "Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Weiqi Zhang & Yinghua Zeng & Qiuqun Xiao & Yuanyuan Wu & Jiale Liu & Haocheng Wang & Yuting Luo & Jie Zhan & Ning Liao & Yanbin Cai, 2024. "An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Keisuke Nakamura & Ryou Kubota & Takuma Aoyama & Kenji Urayama & Itaru Hamachi, 2023. "Four distinct network patterns of supramolecular/polymer composite hydrogels controlled by formation kinetics and interfiber interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36469-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.