IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36245-1.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Uphill energy transfer mechanism for photosynthesis in an Antarctic alga

Author

Listed:
  • Makiko Kosugi

    (Astrobiology Center
    National Astronomical Observatory of Japan
    Chuo University
    National Institutes of Natural Science)

  • Masato Kawasaki

    (High Energy Accelerator Research Organization (KEK)
    The Graduate University of Advanced Studies (Soken-dai))

  • Yutaka Shibata

    (Tohoku University)

  • Kojiro Hara

    (Akita Prefectural University)

  • Shinichi Takaichi

    (Tokyo University of Agriculture)

  • Toshio Moriya

    (High Energy Accelerator Research Organization (KEK))

  • Naruhiko Adachi

    (High Energy Accelerator Research Organization (KEK))

  • Yasuhiro Kamei

    (National Institutes of Natural Sciences
    SOKENDAI (The Graduate University for Advanced Studies))

  • Yasuhiro Kashino

    (University of Hyogo)

  • Sakae Kudoh

    (National Institute of Polar Research, Research Organization of Information and Systems
    SOKENDAI (The Graduate University for Advanced Studies))

  • Hiroyuki Koike

    (Chuo University)

  • Toshiya Senda

    (High Energy Accelerator Research Organization (KEK)
    The Graduate University of Advanced Studies (Soken-dai)
    University of Tsukuba)

Abstract

Prasiola crispa, an aerial green alga, forms layered colonies under the severe terrestrial conditions of Antarctica. Since only far-red light is available at a deep layer of the colony, P. crispa has evolved a molecular system for photosystem II (PSII) excitation using far-red light with uphill energy transfer. However, the molecular basis underlying this system remains elusive. Here, we purified a light-harvesting chlorophyll (Chl)-binding protein complex from P. crispa (Pc-frLHC) that excites PSII with far-red light and revealed its ring-shaped structure with undecameric 11-fold symmetry at 3.13 Å resolution. The primary structure suggests that Pc-frLHC evolved from LHCI rather than LHCII. The circular arrangement of the Pc-frLHC subunits is unique among eukaryote LHCs and forms unprecedented Chl pentamers at every subunit‒subunit interface near the excitation energy exit sites. The Chl pentamers probably contribute to far-red light absorption. Pc-frLHC’s unique Chl arrangement likely promotes PSII excitation with entropy-driven uphill excitation energy transfer.

Suggested Citation

  • Makiko Kosugi & Masato Kawasaki & Yutaka Shibata & Kojiro Hara & Shinichi Takaichi & Toshio Moriya & Naruhiko Adachi & Yasuhiro Kamei & Yasuhiro Kashino & Sakae Kudoh & Hiroyuki Koike & Toshiya Senda, 2023. "Uphill energy transfer mechanism for photosynthesis in an Antarctic alga," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36245-1
    DOI: 10.1038/s41467-023-36245-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36245-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36245-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuepeng Wei & Xiaodong Su & Peng Cao & Xiuying Liu & Wenrui Chang & Mei Li & Xinzheng Zhang & Zhenfeng Liu, 2016. "Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution," Nature, Nature, vol. 534(7605), pages 69-74, June.
    2. Adam Ben-Shem & Felix Frolow & Nathan Nelson, 2003. "Crystal structure of plant photosystem I," Nature, Nature, vol. 426(6967), pages 630-635, December.
    3. Zhenfeng Liu & Hanchi Yan & Kebin Wang & Tingyun Kuang & Jiping Zhang & Lulu Gui & Xiaomin An & Wenrui Chang, 2004. "Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution," Nature, Nature, vol. 428(6980), pages 287-292, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songhao Zhao & Lili Shen & Xiaoyi Li & Qiushuang Tao & Zhenhua Li & Caizhe Xu & Cuicui Zhou & Yanyan Yang & Min Sang & Guangye Han & Long-Jiang Yu & Tingyun Kuang & Jian-Ren Shen & Wenda Wang, 2023. "Structural insights into photosystem II supercomplex and trimeric FCP antennae of a centric diatom Cyclotella meneghiniana," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).
    3. Zhiyuan Mao & Xingyue Li & Zhenhua Li & Liangliang Shen & Xiaoyi Li & Yanyan Yang & Wenda Wang & Tingyun Kuang & Jian-Ren Shen & Guangye Han, 2024. "Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Yu-Zhong Zhang & Kang Li & Bing-Yue Qin & Jian-Ping Guo & Quan-Bao Zhang & Dian-Li Zhao & Xiu-Lan Chen & Jun Gao & Lu-Ning Liu & Long-Sheng Zhao, 2024. "Structure of cryptophyte photosystem II–light-harvesting antennae supercomplex," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Ryo Nagao & Koji Kato & Minoru Kumazawa & Kentaro Ifuku & Makio Yokono & Takehiro Suzuki & Naoshi Dohmae & Fusamichi Akita & Seiji Akimoto & Naoyuki Miyazaki & Jian-Ren Shen, 2022. "Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Mengyuan Zheng & Xiaojie Pang & Ming Chen & Lijin Tian, 2024. "Ultrafast energy quenching mechanism of LHCSR3-dependent photoprotection in Chlamydomonas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36245-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.