IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36031-z.html
   My bibliography  Save this article

Long-lived electronic spin qubits in single-walled carbon nanotubes

Author

Listed:
  • Jia-Shiang Chen

    (Argonne National Laboratory
    Northwestern University)

  • Kasidet Jing Trerayapiwat

    (Boston University)

  • Lei Sun

    (Argonne National Laboratory)

  • Matthew D. Krzyaniak

    (Northwestern University
    Northwestern University)

  • Michael R. Wasielewski

    (Argonne National Laboratory
    Northwestern University
    Northwestern University)

  • Tijana Rajh

    (Argonne National Laboratory
    Arizona State University)

  • Sahar Sharifzadeh

    (Boston University)

  • Xuedan Ma

    (Argonne National Laboratory
    Northwestern University
    University of Chicago)

Abstract

Electron spins in solid-state systems offer the promise of spin-based information processing devices. Single-walled carbon nanotubes (SWCNTs), an all-carbon one-dimensional material whose spin-free environment and weak spin-orbit coupling promise long spin coherence times, offer a diverse degree of freedom for extended range of functionality not available to bulk systems. A key requirement limiting spin qubit implementation in SWCNTs is disciplined confinement of isolated spins. Here, we report the creation of highly confined electron spins in SWCNTs via a bottom-up approach. The record long coherence time of 8.2 µs and spin-lattice relaxation time of 13 ms of these electronic spin qubits allow demonstration of quantum control operation manifested as Rabi oscillation. Investigation of the decoherence mechanism reveals an intrinsic coherence time of tens of milliseconds. These findings evident that combining molecular approaches with inorganic crystalline systems provides a powerful route for reproducible and scalable quantum materials suitable for qubit applications.

Suggested Citation

  • Jia-Shiang Chen & Kasidet Jing Trerayapiwat & Lei Sun & Matthew D. Krzyaniak & Michael R. Wasielewski & Tijana Rajh & Sahar Sharifzadeh & Xuedan Ma, 2023. "Long-lived electronic spin qubits in single-walled carbon nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36031-z
    DOI: 10.1038/s41467-023-36031-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36031-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36031-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sander J. Tans & Michel H. Devoret & Hongjie Dai & Andreas Thess & Richard E. Smalley & L. J. Geerligs & Cees Dekker, 1997. "Individual single-wall carbon nanotubes as quantum wires," Nature, Nature, vol. 386(6624), pages 474-477, April.
    2. C. T. White & T. N. Todorov, 1998. "Carbon nanotubes as long ballistic conductors," Nature, Nature, vol. 393(6682), pages 240-242, May.
    3. N. Bar-Gill & L.M. Pham & A. Jarmola & D. Budker & R.L. Walsworth, 2013. "Solid-state electronic spin coherence time approaching one second," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    4. N. Bar-Gill & L.M. Pham & C. Belthangady & D. Le Sage & P. Cappellaro & J.R. Maze & M.D. Lukin & A. Yacoby & R. Walsworth, 2012. "Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    5. Bálint Náfrádi & Mohammad Choucair & Klaus-Peter Dinse & László Forró, 2016. "Room temperature manipulation of long lifetime spins in metallic-like carbon nanospheres," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    6. K. D. Petersson & L. W. McFaul & M. D. Schroer & M. Jung & J. M. Taylor & A. A. Houck & J. R. Petta, 2012. "Circuit quantum electrodynamics with a spin qubit," Nature, Nature, vol. 490(7420), pages 380-383, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingyu Gao & Sumukh Vaidya & Saakshi Dikshit & Peng Ju & Kunhong Shen & Yuanbin Jin & Shixiong Zhang & Tongcang Li, 2024. "Nanotube spin defects for omnidirectional magnetic field sensing," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Rizzato & Martin Schalk & Stephan Mohr & Jens C. Hermann & Joachim P. Leibold & Fleming Bruckmaier & Giovanna Salvitti & Chenjiang Qian & Peirui Ji & Georgy V. Astakhov & Ulrich Kentsch & Manf, 2023. "Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. E. Garlatti & A. Albino & S. Chicco & V. H. A. Nguyen & F. Santanni & L. Paolasini & C. Mazzoli & R. Caciuffo & F. Totti & P. Santini & R. Sessoli & A. Lunghi & S. Carretta, 2023. "The critical role of ultra-low-energy vibrations in the relaxation dynamics of molecular qubits," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Kiani, Keivan, 2015. "Nanomechanical sensors based on elastically supported double-walled carbon nanotubes," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 216-241.
    4. Chen Zhang & Durga Dasari & Matthias Widmann & Jonas Meinel & Vadim Vorobyov & Polina Kapitanova & Elizaveta Nenasheva & Kazuo Nakamura & Hitoshi Sumiya & Shinobu Onoda & Junichi Isoya & Jörg Wrachtru, 2022. "Quantum-assisted distortion-free audio signal sensing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Aakash, & Bhattacharyay, A., 2023. "Room temperature flashing Ratcheting in nano-channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    6. Hyungsoo Lee & Chan Uk Lee & Juwon Yun & Chang-Seop Jeong & Wooyong Jeong & Jaehyun Son & Young Sun Park & Subin Moon & Soobin Lee & Jun Hwan Kim & Jooho Moon, 2024. "A dual spin-controlled chiral two-/three-dimensional perovskite artificial leaf for efficient overall photoelectrochemical water splitting," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. J. H. Ungerer & A. Pally & A. Kononov & S. Lehmann & J. Ridderbos & P. P. Potts & C. Thelander & K. A. Dick & V. F. Maisi & P. Scarlino & A. Baumgartner & C. Schönenberger, 2024. "Strong coupling between a microwave photon and a singlet-triplet qubit," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Yu-Xin Wang & Aashish A. Clerk, 2021. "Intrinsic and induced quantum quenches for enhancing qubit-based quantum noise spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Hodaka Kurokawa & Keidai Wakamatsu & Shintaro Nakazato & Toshiharu Makino & Hiromitsu Kato & Yuhei Sekiguchi & Hideo Kosaka, 2024. "Coherent electric field control of orbital state of a neutral nitrogen-vacancy center," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36031-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.