IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v393y1998i6682d10.1038_30420.html
   My bibliography  Save this article

Carbon nanotubes as long ballistic conductors

Author

Listed:
  • C. T. White

    (University of Oxford
    Naval Research Laboratory)

  • T. N. Todorov

    (University of Oxford)

Abstract

Early theoretical work on single-walled carbon nanotubes1,2,3 predicted that a special achiral subset of these structures known as armchair nanotubes3 should be metallic. Tans et al.4 have recently confirmed these predictions experimentally and also showed directly that coherent electron transport can be maintained through these nanowires up to distances of at least 140 nm. But single-walled armchair nanotubes are one-dimensional conductors with only two open conduction channels (energy subbands in a laterally confined system that cross the Fermi level)1,2,3. Hence, with increasing length, their conduction electrons ultimately become localized5 owing to residual disorder in the tube which is inevitably produced by interactions between the tube and its environment. We present here calculations which show, however, that unlike normal metallic wires, conduction electrons in armchair nanotubes experience an effective disorder averaged over the tube's circumference, leading to electron mean free paths that increase with nanotube diameter. This increase should result in exceptional ballistic transport properties and localization lengths of 10 µm or more for tubes with the diameters that are typically produced experimentally6.

Suggested Citation

  • C. T. White & T. N. Todorov, 1998. "Carbon nanotubes as long ballistic conductors," Nature, Nature, vol. 393(6682), pages 240-242, May.
  • Handle: RePEc:nat:nature:v:393:y:1998:i:6682:d:10.1038_30420
    DOI: 10.1038/30420
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/30420
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/30420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia-Shiang Chen & Kasidet Jing Trerayapiwat & Lei Sun & Matthew D. Krzyaniak & Michael R. Wasielewski & Tijana Rajh & Sahar Sharifzadeh & Xuedan Ma, 2023. "Long-lived electronic spin qubits in single-walled carbon nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6682:d:10.1038_30420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.