IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36005-1.html
   My bibliography  Save this article

Proteogenomics of diffuse gliomas reveal molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms

Author

Listed:
  • Yunzhi Wang

    (Fudan University)

  • Rongkui Luo

    (Fudan University)

  • Xuan Zhang

    (Fudan University Shanghai Cancer Center
    Fudan University)

  • Hang Xiang

    (Fudan University)

  • Bing Yang

    (Fudan University)

  • Jinwen Feng

    (Fudan University)

  • Mengjie Deng

    (Fudan University)

  • Peng Ran

    (Fudan University)

  • Akesu Sujie

    (Fudan University)

  • Fan Zhang

    (Fudan University)

  • Jiajun Zhu

    (Fudan University)

  • Subei Tan

    (Fudan University)

  • Tao Xie

    (Fudan University)

  • Pin Chen

    (Fudan University)

  • Zixiang Yu

    (Fudan University)

  • Yan Li

    (Fudan University)

  • Dongxian Jiang

    (Fudan University)

  • Xiaobiao Zhang

    (Fudan University)

  • Jian-Yuan Zhao

    (Shanghai Jiao Tong University School of Medicine
    Zhengzhou University)

  • Yingyong Hou

    (Fudan University)

  • Chen Ding

    (Fudan University)

Abstract

Diffuse gliomas are devastating brain tumors. Here, we perform a proteogenomic profiling of 213 retrospectively collected glioma tumors. Proteogenomic analysis reveals the downstream biological events leading by EGFR-, IDH1-, TP53-mutations. The comparative analysis illustrates the distinctive features of GBMs and LGGs, indicating CDK2 inhibitor might serve as a promising drug target for GBMs. Further proteogenomic integrative analysis combined with functional experiments highlight the cis-effect of EGFR alterations might lead to glioma tumor cell proliferation through ERK5 medicates nucleotide synthesis process. Proteome-based stratification of gliomas defines 3 proteomic subgroups (S-Ne, S-Pf, S-Im), which could serve as a complement to WHO subtypes, and would provide the essential framework for the utilization of specific targeted therapies for particular glioma subtypes. Immune clustering identifies three immune subtypes with distinctive immune cell types. Further analysis reveals higher EGFR alteration frequencies accounts for elevation of immune check point protein: PD-L1 and CD70 in T-cell infiltrated tumors.

Suggested Citation

  • Yunzhi Wang & Rongkui Luo & Xuan Zhang & Hang Xiang & Bing Yang & Jinwen Feng & Mengjie Deng & Peng Ran & Akesu Sujie & Fan Zhang & Jiajun Zhu & Subei Tan & Tao Xie & Pin Chen & Zixiang Yu & Yan Li & , 2023. "Proteogenomics of diffuse gliomas reveal molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-32, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36005-1
    DOI: 10.1038/s41467-023-36005-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36005-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36005-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Björn Schwanhäusser & Dorothea Busse & Na Li & Gunnar Dittmar & Johannes Schuchhardt & Jana Wolf & Wei Chen & Matthias Selbach, 2011. "Global quantification of mammalian gene expression control," Nature, Nature, vol. 473(7347), pages 337-342, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    2. Lingling Li & Dongxian Jiang & Hui Liu & Chunmei Guo & Rui Zhao & Qiao Zhang & Chen Xu & Zhaoyu Qin & Jinwen Feng & Yang Liu & Haixing Wang & Weijie Chen & Xue Zhang & Bin Li & Lin Bai & Sha Tian & Su, 2023. "Comprehensive proteogenomic characterization of early duodenal cancer reveals the carcinogenesis tracks of different subtypes," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    3. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    4. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    6. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    7. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    8. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    9. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    10. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    11. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    12. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    13. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    14. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    15. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    16. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    18. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    19. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36005-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.