IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp1106-1118.html
   My bibliography  Save this article

Statistical characterization of non-linear microscopic mechanical deformation through randomly oriented fibrous porous transport layers for advanced electrochemical energy systems

Author

Listed:
  • Akbar, Ali
  • Liu, Jiawen
  • Chung, Sung-Jae
  • Um, Sukkee

Abstract

A robust compression model based on the unit-cell beam bending theory is presented to predict the mechanical behavior of stochastically generated fibrous porous transport layers (PTLs) at various clamping pressures. For this purpose, three-dimensional PTLs were constructed by piling random paper-type carbon-fiber structures. A representative elementary volume was determined based on the relative porosity gradient errors with a 95% confidence level for statistical analyses. Subsequently, a mechanical compression model based on the beam bending theory was developed to determine the microscale deformation characteristics of the PTLs for electrochemical energy systems. Based on the beam bending theory, carbon fibers are modeled as beams, and the bending of fibers is considered to be the main contributor to deformation of the PTLs. The numerical model shows good agreement with published experimental data in literature, i.e., a nonlinear stress–strain relationship. Next, the model was applied to feature bulk and local mechanical variations of the PTLs as functions of the number of carbon-fiber layers, porosity, polytetrafluoroethylene (PTFE) loading, and external clamping pressure. It was found that the addition of binder/PTFE into fibrous substrates results in the decreased porosity and increased mechanical strength of the PTLs. The detailed three-dimensional microscale deformation simulations revealed that the statistical mean strain of the PTLs was exponentially proportional to the porosity in the range 0.7–0.9 and decreased on addition of PTFE in the fibrous carbon substrate at a stack clamping pressure of 1 MPa. Moreover, the statistically estimated local strain distribution along the in- and through-planes of the PTLs indicated that the microscopic local deformation was approximately uniform through the PTLs. This modeling study can be utilized to understand the mechanical behavior of heterogeneous PTLs during external compression for advanced electrochemical systems.

Suggested Citation

  • Akbar, Ali & Liu, Jiawen & Chung, Sung-Jae & Um, Sukkee, 2021. "Statistical characterization of non-linear microscopic mechanical deformation through randomly oriented fibrous porous transport layers for advanced electrochemical energy systems," Renewable Energy, Elsevier, vol. 178(C), pages 1106-1118.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1106-1118
    DOI: 10.1016/j.renene.2021.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    2. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    3. Bouziane, Khadidja & Khetabi, El Mahdi & Lachat, Rémy & Zamel, Nada & Meyer, Yann & Candusso, Denis, 2020. "Impact of cyclic mechanical compression on the electrical contact resistance between the gas diffusion layer and the bipolar plate of a polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 153(C), pages 349-361.
    4. Liu, Jiawen & Shin, Seungho & Um, Sukkee, 2019. "Comprehensive statistical analysis of heterogeneous transport characteristics in multifunctional porous gas diffusion layers using lattice Boltzmann method for fuel cell applications," Renewable Energy, Elsevier, vol. 139(C), pages 279-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akbar, Ali & Um, Sukkee, 2022. "Influence of external clamping pressure on nanoscopic mechanical deformation and catalyst utilization of quaternion PtC catalyst layers for PEMFCs," Renewable Energy, Elsevier, vol. 194(C), pages 195-210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Wei & Zhang, Kai & Huang, Xing & Cai, Zhen & Zheng, Jinjin & Kai, Yue & Zheng, Bailin & Song, Ke, 2024. "Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 353(PA).
    2. Yanqin Chen & Yuchao Ke & Yingsong Xia & Chongdu Cho, 2021. "Investigation on Mechanical Properties of a Carbon Paper Gas Diffusion Layer through a 3-D Nonlinear and Orthotropic Constitutive Model," Energies, MDPI, vol. 14(19), pages 1-14, October.
    3. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    5. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    6. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Zhiming Zhang & Jun Zhang & Liang Shi & Tong Zhang, 2022. "A Study of Contact Pressure with Thermo-Mechanical Coupled Action for a Full-Dimensional PEMFC Stack," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    8. Akbar, Ali & Um, Sukkee, 2022. "Influence of external clamping pressure on nanoscopic mechanical deformation and catalyst utilization of quaternion PtC catalyst layers for PEMFCs," Renewable Energy, Elsevier, vol. 194(C), pages 195-210.
    9. Barzegari, M.M. & Ghadimi, M. & Momenifar, M., 2020. "Investigation of contact pressure distribution on gas diffusion layer of fuel cell with pneumatic endplate," Applied Energy, Elsevier, vol. 263(C).
    10. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    11. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    12. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    13. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    14. Zhiming Zhang & Jun Zhang & Tong Zhang, 2022. "Endplate Design and Topology Optimization of Fuel Cell Stack Clamped with Bolts," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    15. Hu, Bin & He, Guangjian & Chang, Fulu & Yang, Han & Cao, Xianwu & Yin, Xiaochun, 2022. "Low filler and highly conductive composite bipolar plates with synergistic segregated structure for enhanced proton exchange membrane fuel cell performance," Energy, Elsevier, vol. 251(C).
    16. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2024. "Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design," Applied Energy, Elsevier, vol. 362(C).
    17. Blandy Pamplona Solis & Julio César Cruz Argüello & Leopoldo Gómez Barba & Mayra Polett Gurrola & Zakaryaa Zarhri & Danna Lizeth TrejoArroyo, 2019. "Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    18. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Zhang, Lu & Li, Yuehua & Song, Xin & Wang, Mingkai & Wang, He, 2022. "Corrosion of metallic bipolar plates accelerated by operating conditions in a simulated PEM fuel cell cathode environment," Renewable Energy, Elsevier, vol. 194(C), pages 1277-1287.
    19. Perng, Shiang-Wuu & Chien, Tsai-Chieh & Horng, Rong-Fang & Wu, Horng-Wen, 2019. "Performance enhancement of a plate methanol steam reformer by ribs installed in the reformer channel," Energy, Elsevier, vol. 167(C), pages 588-601.
    20. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2022. "Microstructures and electrical conductivity properties of compressed gas diffusion layers using X-ray tomography," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1106-1118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.