IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35583-w.html
   My bibliography  Save this article

Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy

Author

Listed:
  • Marcel P. Trefny

    (University of Basel and University Hospital of Basel)

  • Nicole Kirchhammer

    (University of Basel and University Hospital of Basel)

  • Priska Auf der Maur

    (University of Basel and University Hospital of Basel)

  • Marina Natoli

    (University of Basel and University Hospital of Basel)

  • Dominic Schmid

    (University of Basel and University Hospital of Basel)

  • Markus Germann

    (University of Basel and University Hospital of Basel)

  • Laura Fernandez Rodriguez

    (University of Basel and University Hospital of Basel)

  • Petra Herzig

    (University of Basel and University Hospital of Basel)

  • Jonas Lötscher

    (University of Basel and University Hospital of Basel)

  • Maryam Akrami

    (University of Basel and University Hospital of Basel)

  • Jane C. Stinchcombe

    (Cambridge Institute for Medical Research, Biomedical Campus)

  • Michal A. Stanczak

    (University of Basel and University Hospital of Basel)

  • Andreas Zingg

    (University of Basel and University Hospital of Basel)

  • Melanie Buchi

    (University of Basel and University Hospital of Basel)

  • Julien Roux

    (University of Basel and University Hospital of Basel
    Swiss Institute of Bioinformatics)

  • Romina Marone

    (University of Basel and University Hospital of Basel
    Basel University Hospital)

  • Leyla Don

    (University of Basel and University Hospital of Basel)

  • Didier Lardinois

    (University Hospital Basel)

  • Mark Wiese

    (University Hospital Basel)

  • Lukas T. Jeker

    (University of Basel and University Hospital of Basel
    Basel University Hospital)

  • Mohamed Bentires-Alj

    (University of Basel and University Hospital of Basel)

  • Jérémie Rossy

    (University of Konstanz)

  • Daniela S. Thommen

    (University of Basel and University Hospital of Basel
    Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute)

  • Gillian M. Griffiths

    (Cambridge Institute for Medical Research, Biomedical Campus)

  • Heinz Läubli

    (University of Basel and University Hospital of Basel
    University Hospital Basel)

  • Christoph Hess

    (University of Basel and University Hospital of Basel
    University of Cambridge)

  • Alfred Zippelius

    (University of Basel and University Hospital of Basel
    University Hospital Basel)

Abstract

Tumor-specific T cells are frequently exhausted by chronic antigenic stimulation. We here report on a human antigen-specific ex vivo model to explore new therapeutic options for T cell immunotherapies. T cells generated with this model resemble tumor-infiltrating exhausted T cells on a phenotypic and transcriptional level. Using a targeted pooled CRISPR-Cas9 screen and individual gene knockout validation experiments, we uncover sorting nexin-9 (SNX9) as a mediator of T cell exhaustion. Upon TCR/CD28 stimulation, deletion of SNX9 in CD8 T cells decreases PLCγ1, Ca2+, and NFATc2-mediated T cell signaling and reduces expression of NR4A1/3 and TOX. SNX9 knockout enhances memory differentiation and IFNγ secretion of adoptively transferred T cells and results in improved anti-tumor efficacy of human chimeric antigen receptor T cells in vivo. Our findings highlight that targeting SNX9 is a strategy to prevent T cell exhaustion and enhance anti-tumor immunity.

Suggested Citation

  • Marcel P. Trefny & Nicole Kirchhammer & Priska Auf der Maur & Marina Natoli & Dominic Schmid & Markus Germann & Laura Fernandez Rodriguez & Petra Herzig & Jonas Lötscher & Maryam Akrami & Jane C. Stin, 2023. "Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35583-w
    DOI: 10.1038/s41467-022-35583-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35583-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35583-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joyce Chen & Isaac F. López-Moyado & Hyungseok Seo & Chan-Wang J. Lio & Laura J. Hempleman & Takashi Sekiya & Akihiko Yoshimura & James P. Scott-Browne & Anjana Rao, 2019. "NR4A transcription factors limit CAR T cell function in solid tumours," Nature, Nature, vol. 567(7749), pages 530-534, March.
    2. Marian L. Burr & Christina E. Sparbier & Yih-Chih Chan & James C. Williamson & Katherine Woods & Paul A. Beavis & Enid Y. N. Lam & Melissa A. Henderson & Charles C. Bell & Sabine Stolzenburg & Omer Gi, 2017. "CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity," Nature, Nature, vol. 549(7670), pages 101-105, September.
    3. Andrew C. Scott & Friederike Dündar & Paul Zumbo & Smita S. Chandran & Christopher A. Klebanoff & Mojdeh Shakiba & Prerak Trivedi & Laura Menocal & Heather Appleby & Steven Camara & Dmitriy Zamarin & , 2019. "TOX is a critical regulator of tumour-specific T cell differentiation," Nature, Nature, vol. 571(7764), pages 270-274, July.
    4. Julia Carnevale & Eric Shifrut & Nupura Kale & William A. Nyberg & Franziska Blaeschke & Yan Yi Chen & Zhongmei Li & Sagar P. Bapat & Morgan E. Diolaiti & Patrick O’Leary & Shane Vedova & Julia Belk &, 2022. "RASA2 ablation in T cells boosts antigen sensitivity and long-term function," Nature, Nature, vol. 609(7925), pages 174-182, September.
    5. Shashank J. Patel & Neville E. Sanjana & Rigel J. Kishton & Arash Eidizadeh & Suman K. Vodnala & Maggie Cam & Jared J. Gartner & Li Jia & Seth M. Steinberg & Tori N. Yamamoto & Anand S. Merchant & Gau, 2017. "Identification of essential genes for cancer immunotherapy," Nature, Nature, vol. 548(7669), pages 537-542, August.
    6. Massimo Andreatta & Jesus Corria-Osorio & Sören Müller & Rafael Cubas & George Coukos & Santiago J. Carmona, 2021. "Interpretation of T cell states from single-cell transcriptomics data using reference atlases," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Liu & Brian Debo & Mingfeng Li & Zhennan Shi & Wanqiang Sheng & Yang Shi, 2021. "LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Alexandria C. Wells & Kaito A. Hioki & Constance C. Angelou & Adam C. Lynch & Xueting Liang & Daniel J. Ryan & Iris Thesmar & Saule Zhanybekova & Saulius Zuklys & Jacob Ullom & Agnes Cheong & Jesse Ma, 2023. "Let-7 enhances murine anti-tumor CD8 T cell responses by promoting memory and antagonizing terminal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Xiaofeng Liao & Wenxue Li & Hongyue Zhou & Barani Kumar Rajendran & Ao Li & Jingjing Ren & Yi Luan & David A. Calderwood & Benjamin Turk & Wenwen Tang & Yansheng Liu & Dianqing Wu, 2024. "The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8+ T cells," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Carli M. Stewart & Elizabeth L. Siegler & R. Leo Sakemura & Michelle J. Cox & Truc Huynh & Brooke Kimball & Long Mai & Ismail Can & Claudia Manriquez Roman & Kun Yun & Olivia Sirpilla & James H. Girsc, 2024. "IL-4 drives exhaustion of CD8+ CART cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Chunping Mao & Fuan Deng & Wanning Zhu & Leiming Xie & Yijun Wang & Guoyin Li & Xingke Huang & Jiahui Wang & Yue Song & Ping Zeng & Zhenpeng He & Jingnan Guo & Yao Suo & Yujing Liu & Zhuo Chen & Mingx, 2024. "In situ editing of tumour cell membranes induces aggregation and capture of PD-L1 membrane proteins for enhanced cancer immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Lei Xia & Anastasia Komissarova & Arielle Jacover & Yehuda Shovman & Sebastian Arcila-Barrera & Sharona Tornovsky-Babeay & Milsee Mol Jaya Prakashan & Abdelmajeed Nasereddin & Inbar Plaschkes & Yuval , 2023. "Systematic identification of gene combinations to target in innate immune cells to enhance T cell activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Hao Wu & Xiufeng Zhao & Sophia M. Hochrein & Miriam Eckstein & Gabriela F. Gubert & Konrad Knöpper & Ana Maria Mansilla & Arman Öner & Remi Doucet-Ladevèze & Werner Schmitz & Bart Ghesquière & Sebasti, 2023. "Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Kateryna Onyshchenko & Ren Luo & Elena Guffart & Simone Gaedicke & Anca-Ligia Grosu & Elke Firat & Gabriele Niedermann, 2023. "Expansion of circulating stem-like CD8+ T cells by adding CD122-directed IL-2 complexes to radiation and anti-PD1 therapies in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Wenfeng Ren & Zilong Xu & Yating Chang & Fei Ju & Hongning Wu & Zhiqi Liang & Min Zhao & Naizhen Wang & Yanhua Lin & Chenhang Xu & Shengming Chen & Yipeng Rao & Chaolong Lin & Jianxin Yang & Pingguo L, 2024. "Pharmaceutical targeting of OTUB2 sensitizes tumors to cytotoxic T cells via degradation of PD-L1," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Carmen Oi Ning Leung & Yang Yang & Rainbow Wing Hei Leung & Karl Kam Hei So & Hai Jun Guo & Martina Mang Leng Lei & Gregory Kenneth Muliawan & Yuan Gao & Qian Qian Yu & Jing Ping Yun & Stephanie Ma & , 2023. "Broad-spectrum kinome profiling identifies CDK6 upregulation as a driver of lenvatinib resistance in hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Leticia Laura Niborski & Paul Gueguen & Mengliang Ye & Allan Thiolat & Rodrigo Nalio Ramos & Pamela Caudana & Jordan Denizeau & Ludovic Colombeau & Raphaël Rodriguez & Christel Goudot & Jean-Michel Lu, 2022. "CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Massimo Andreatta & Léonard Hérault & Paul Gueguen & David Gfeller & Ariel J. Berenstein & Santiago J. Carmona, 2024. "Semi-supervised integration of single-cell transcriptomics data," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Su Yin Lim & Elena Shklovskaya & Jenny H. Lee & Bernadette Pedersen & Ashleigh Stewart & Zizhen Ming & Mal Irvine & Brindha Shivalingam & Robyn P. M. Saw & Alexander M. Menzies & Matteo S. Carlino & R, 2023. "The molecular and functional landscape of resistance to immune checkpoint blockade in melanoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Matthew A. Cottam & Heather L. Caslin & Nathan C. Winn & Alyssa H. Hasty, 2022. "Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Markus Haake & Beatrice Haack & Tina Schäfer & Patrick N. Harter & Greta Mattavelli & Patrick Eiring & Neha Vashist & Florian Wedekink & Sabrina Genssler & Birgitt Fischer & Julia Dahlhoff & Fatemeh M, 2023. "Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Sonali Jindal & Nathan D. Pennock & Duanchen Sun & Wesley Horton & Michelle K. Ozaki & Jayasri Narasimhan & Alexandra Q. Bartlett & Sheila Weinmann & Paul E. Goss & Virginia F. Borges & Zheng Xia & Pe, 2021. "Postpartum breast cancer has a distinct molecular profile that predicts poor outcomes," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    19. Anja Fischer & Thomas K. Albert & Natalia Moreno & Marta Interlandi & Jana Mormann & Selina Glaser & Paurnima Patil & Flavia W. Faria & Mathis Richter & Archana Verma & Sebastian T. Balbach & Rabea Wa, 2024. "Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Julia Joung & Paul C. Kirchgatterer & Ankita Singh & Jang H. Cho & Suchita P. Nety & Rebecca C. Larson & Rhiannon K. Macrae & Rebecca Deasy & Yuen-Yi Tseng & Marcela V. Maus & Feng Zhang, 2022. "CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35583-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.