IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v549y2017i7670d10.1038_nature23643.html
   My bibliography  Save this article

CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity

Author

Listed:
  • Marian L. Burr

    (Peter MacCallum Cancer Centre
    University of Melbourne
    Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

  • Christina E. Sparbier

    (Peter MacCallum Cancer Centre)

  • Yih-Chih Chan

    (Peter MacCallum Cancer Centre)

  • James C. Williamson

    (Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

  • Katherine Woods

    (School of Cancer Medicine, La Trobe University
    Olivia Newton-John Cancer Research Institute)

  • Paul A. Beavis

    (Peter MacCallum Cancer Centre
    University of Melbourne)

  • Enid Y. N. Lam

    (Peter MacCallum Cancer Centre
    University of Melbourne)

  • Melissa A. Henderson

    (Peter MacCallum Cancer Centre
    University of Melbourne)

  • Charles C. Bell

    (Peter MacCallum Cancer Centre
    University of Melbourne)

  • Sabine Stolzenburg

    (Peter MacCallum Cancer Centre)

  • Omer Gilan

    (Peter MacCallum Cancer Centre
    University of Melbourne)

  • Stuart Bloor

    (Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

  • Tahereh Noori

    (Peter MacCallum Cancer Centre)

  • David W. Morgens

    (Stanford University)

  • Michael C. Bassik

    (Stanford University)

  • Paul J. Neeson

    (Peter MacCallum Cancer Centre
    University of Melbourne)

  • Andreas Behren

    (School of Cancer Medicine, La Trobe University
    Olivia Newton-John Cancer Research Institute)

  • Phillip K. Darcy

    (Peter MacCallum Cancer Centre
    University of Melbourne)

  • Sarah-Jane Dawson

    (Peter MacCallum Cancer Centre
    University of Melbourne
    Centre for Cancer Research, University of Melbourne)

  • Ilia Voskoboinik

    (Peter MacCallum Cancer Centre
    University of Melbourne)

  • Joseph A. Trapani

    (Peter MacCallum Cancer Centre
    University of Melbourne)

  • Jonathan Cebon

    (School of Cancer Medicine, La Trobe University
    Olivia Newton-John Cancer Research Institute)

  • Paul J. Lehner

    (Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

  • Mark A. Dawson

    (Peter MacCallum Cancer Centre
    University of Melbourne
    Centre for Cancer Research, University of Melbourne
    Peter MacCallum Cancer Centre)

Abstract

CMTM6 maintains PD-L1 at the plasma membrane by inhibiting its lysosome-mediated degradation and promoting its recycling.

Suggested Citation

  • Marian L. Burr & Christina E. Sparbier & Yih-Chih Chan & James C. Williamson & Katherine Woods & Paul A. Beavis & Enid Y. N. Lam & Melissa A. Henderson & Charles C. Bell & Sabine Stolzenburg & Omer Gi, 2017. "CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity," Nature, Nature, vol. 549(7670), pages 101-105, September.
  • Handle: RePEc:nat:nature:v:549:y:2017:i:7670:d:10.1038_nature23643
    DOI: 10.1038/nature23643
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature23643
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature23643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyan Xu & Tingxue Xie & Mengxin Zhou & Yaqin Sun & Fengqi Wang & Yanan Tian & Ziyan Chen & Yanqi Xie & Ronghai Wu & Xufeng Cen & Jichun Zhou & Tingjun Hou & Lei Zhang & Chaoyang Huang & Qingwei Zha, 2024. "Hsc70 promotes anti-tumor immunity by targeting PD-L1 for lysosomal degradation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Marcel P. Trefny & Nicole Kirchhammer & Priska Auf der Maur & Marina Natoli & Dominic Schmid & Markus Germann & Laura Fernandez Rodriguez & Petra Herzig & Jonas Lötscher & Maryam Akrami & Jane C. Stin, 2023. "Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Wenfeng Ren & Zilong Xu & Yating Chang & Fei Ju & Hongning Wu & Zhiqi Liang & Min Zhao & Naizhen Wang & Yanhua Lin & Chenhang Xu & Shengming Chen & Yipeng Rao & Chaolong Lin & Jianxin Yang & Pingguo L, 2024. "Pharmaceutical targeting of OTUB2 sensitizes tumors to cytotoxic T cells via degradation of PD-L1," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Dan Liu & Jin Yan & Fang Ma & Jingmei Wang & Siqi Yan & Wangxiao He, 2024. "Reinvigoration of cytotoxic T lymphocytes in microsatellite instability-high colon adenocarcinoma through lysosomal degradation of PD-L1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Lei Guan & Bin Wu & Ting Li & Lynn A. Beer & Gaurav Sharma & Mingyue Li & Chin Nien Lee & Shujing Liu & Changsong Yang & Lili Huang & Dennie T. Frederick & Genevieve M. Boland & Guangcan Shao & Tatyan, 2022. "HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Chunping Mao & Fuan Deng & Wanning Zhu & Leiming Xie & Yijun Wang & Guoyin Li & Xingke Huang & Jiahui Wang & Yue Song & Ping Zeng & Zhenpeng He & Jingnan Guo & Yao Suo & Yujing Liu & Zhuo Chen & Mingx, 2024. "In situ editing of tumour cell membranes induces aggregation and capture of PD-L1 membrane proteins for enhanced cancer immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Qing Li & Liren Zhang & Wenhua You & Jiali Xu & Jingjing Dai & Dongxu Hua & Ruizhi Zhang & Feifan Yao & Suiqing Zhou & Wei Huang & Yongjiu Dai & Yu Zhang & Tasiken Baheti & Xiaofeng Qian & Liyong Pu &, 2022. "PRDM1/BLIMP1 induces cancer immune evasion by modulating the USP22-SPI1-PD-L1 axis in hepatocellular carcinoma cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Zhen Shu & Bhakti Dwivedi & Jeffrey M. Switchenko & David S. Yu & Xingming Deng, 2024. "PD-L1 deglycosylation promotes its nuclear translocation and accelerates DNA double-strand-break repair in cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Wenjun Xiong & Xueliang Gao & Tiantian Zhang & Baishan Jiang & Ming-Ming Hu & Xia Bu & Yang Gao & Lin-Zhou Zhang & Bo-Lin Xiao & Chuan He & Yishuang Sun & Haiou Li & Jie Shi & Xiangling Xiao & Bolin X, 2022. "USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Di-Ao Liu & Kai Tao & Bin Wu & Ziyan Yu & Malwina Szczepaniak & Matthew Rames & Changsong Yang & Tatyana Svitkina & Yueyao Zhu & Fengyuan Xu & Xiaolin Nan & Wei Guo, 2023. "A phosphoinositide switch mediates exocyst recruitment to multivesicular endosomes for exosome secretion," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Yidan Xu & Guowen Jia & Tingting Li & Zixuan Zhou & Yitian Luo & Yulin Chao & Juan Bao & Zhaoming Su & Qianhui Qu & Dianfan Li, 2022. "Molecular insights into biogenesis of glycosylphosphatidylinositol anchor proteins," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Bo Jiang & Xiaozhi Zhao & Wei Chen & Wenli Diao & Meng Ding & Haixiang Qin & Binghua Li & Wenmin Cao & Wei Chen & Yao Fu & Kuiqiang He & Jie Gao & Mengxia Chen & Tingsheng Lin & Yongming Deng & Chao Y, 2022. "Lysosomal protein transmembrane 5 promotes lung-specific metastasis by regulating BMPR1A lysosomal degradation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Lei Xia & Anastasia Komissarova & Arielle Jacover & Yehuda Shovman & Sebastian Arcila-Barrera & Sharona Tornovsky-Babeay & Milsee Mol Jaya Prakashan & Abdelmajeed Nasereddin & Inbar Plaschkes & Yuval , 2023. "Systematic identification of gene combinations to target in innate immune cells to enhance T cell activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Baiwen Chen & Jiajia Hu & Xianting Hu & Huifang Chen & Rujuan Bao & Yatao Zhou & Youqiong Ye & Meixiao Zhan & Wei Cai & Huabin Li & Hua-Bing Li, 2022. "DENR controls JAK2 translation to induce PD-L1 expression for tumor immune evasion," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:549:y:2017:i:7670:d:10.1038_nature23643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.