IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35446-4.html
   My bibliography  Save this article

Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs

Author

Listed:
  • Ki Youl Yang

    (E.L.Ginzton Laboratory, Stanford University
    John A. Paulson School of Engineering and Applied Sciences, Harvard University)

  • Chinmay Shirpurkar

    (The College of Optics and Photonics, University of Central Florida)

  • Alexander D. White

    (E.L.Ginzton Laboratory, Stanford University)

  • Jizhao Zang

    (Time and Frequency Division, National Institute of Standards and Technology
    University of Colorado)

  • Lin Chang

    (University of California)

  • Farshid Ashtiani

    (University of Pennsylvania)

  • Melissa A. Guidry

    (E.L.Ginzton Laboratory, Stanford University)

  • Daniil M. Lukin

    (E.L.Ginzton Laboratory, Stanford University)

  • Srinivas V. Pericherla

    (The College of Optics and Photonics, University of Central Florida)

  • Joshua Yang

    (E.L.Ginzton Laboratory, Stanford University)

  • Hyounghan Kwon

    (E.L.Ginzton Laboratory, Stanford University)

  • Jesse Lu

    (E.L.Ginzton Laboratory, Stanford University
    SPINS Photonics Inc)

  • Geun Ho Ahn

    (E.L.Ginzton Laboratory, Stanford University)

  • Kasper Van Gasse

    (E.L.Ginzton Laboratory, Stanford University)

  • Yan Jin

    (Time and Frequency Division, National Institute of Standards and Technology
    University of Colorado)

  • Su-Peng Yu

    (Time and Frequency Division, National Institute of Standards and Technology
    University of Colorado)

  • Travis C. Briles

    (Time and Frequency Division, National Institute of Standards and Technology)

  • Jordan R. Stone

    (Time and Frequency Division, National Institute of Standards and Technology)

  • David R. Carlson

    (Time and Frequency Division, National Institute of Standards and Technology
    Octave Photonics)

  • Hao Song

    (University of Southern California)

  • Kaiheng Zou

    (University of Southern California)

  • Huibin Zhou

    (University of Southern California)

  • Kai Pang

    (University of Southern California)

  • Han Hao

    (University of Pennsylvania)

  • Lawrence Trask

    (The College of Optics and Photonics, University of Central Florida)

  • Mingxiao Li

    (University of California)

  • Andy Netherton

    (University of California)

  • Lior Rechtman

    (The Hebrew University of Jerusalem)

  • Jeffery S. Stone

    (Corning Incorporated)

  • Jinhee L. Skarda

    (E.L.Ginzton Laboratory, Stanford University)

  • Logan Su

    (E.L.Ginzton Laboratory, Stanford University)

  • Dries Vercruysse

    (E.L.Ginzton Laboratory, Stanford University)

  • Jean-Philippe W. MacLean

    (E.L.Ginzton Laboratory, Stanford University)

  • Shahriar Aghaeimeibodi

    (E.L.Ginzton Laboratory, Stanford University)

  • Ming-Jun Li

    (Corning Incorporated)

  • David A. B. Miller

    (E.L.Ginzton Laboratory, Stanford University)

  • Dan M. Marom

    (The Hebrew University of Jerusalem)

  • Alan E. Willner

    (Octave Photonics)

  • John E. Bowers

    (University of California)

  • Scott B. Papp

    (Time and Frequency Division, National Institute of Standards and Technology
    University of Colorado)

  • Peter J. Delfyett

    (The College of Optics and Photonics, University of Central Florida)

  • Firooz Aflatouni

    (University of Pennsylvania)

  • Jelena Vučković

    (E.L.Ginzton Laboratory, Stanford University
    SPINS Photonics Inc)

Abstract

The use of optical interconnects has burgeoned as a promising technology that can address the limits of data transfer for future high-performance silicon chips. Recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated multi-dimensional communication scheme that combines wavelength- and mode- multiplexing on a silicon photonic circuit. Using foundry-compatible photonic inverse design and spectrally flattened microcombs, we demonstrate a 1.12-Tb/s natively error-free data transmission throughout a silicon nanophotonic waveguide. Furthermore, we implement inverse-designed surface-normal couplers to enable multimode optical transmission between separate silicon chips throughout a multimode-matched fibre. All the inverse-designed devices comply with the process design rules for standard silicon photonic foundries. Our approach is inherently scalable to a multiplicative enhancement over the state of the art silicon photonic transmitters.

Suggested Citation

  • Ki Youl Yang & Chinmay Shirpurkar & Alexander D. White & Jizhao Zang & Lin Chang & Farshid Ashtiani & Melissa A. Guidry & Daniil M. Lukin & Srinivas V. Pericherla & Joshua Yang & Hyounghan Kwon & Jess, 2022. "Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35446-4
    DOI: 10.1038/s41467-022-35446-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35446-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35446-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mian Zhang & Brandon Buscaino & Cheng Wang & Amirhassan Shams-Ansari & Christian Reimer & Rongrong Zhu & Joseph M. Kahn & Marko Lončar, 2019. "Broadband electro-optic frequency comb generation in a lithium niobate microring resonator," Nature, Nature, vol. 568(7752), pages 373-377, April.
    2. Chen Sun & Mark T. Wade & Yunsup Lee & Jason S. Orcutt & Luca Alloatti & Michael S. Georgas & Andrew S. Waterman & Jeffrey M. Shainline & Rimas R. Avizienis & Sen Lin & Benjamin R. Moss & Rajesh Kumar, 2015. "Single-chip microprocessor that communicates directly using light," Nature, Nature, vol. 528(7583), pages 534-538, December.
    3. Lian-Wee Luo & Noam Ophir & Christine P. Chen & Lucas H. Gabrielli & Carl B. Poitras & Keren Bergmen & Michal Lipson, 2014. "WDM-compatible mode-division multiplexing on a silicon chip," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    4. Lucas H. Gabrielli & David Liu & Steven G. Johnson & Michal Lipson, 2012. "On-chip transformation optics for multimode waveguide bends," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    5. Bill Corcoran & Mengxi Tan & Xingyuan Xu & Andreas Boes & Jiayang Wu & Thach G. Nguyen & Sai T. Chu & Brent E. Little & Roberto Morandotti & Arnan Mitchell & David J. Moss, 2020. "Ultra-dense optical data transmission over standard fibre with a single chip source," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. Pablo Marin-Palomo & Juned N. Kemal & Maxim Karpov & Arne Kordts & Joerg Pfeifle & Martin H. P. Pfeiffer & Philipp Trocha & Stefan Wolf & Victor Brasch & Miles H. Anderson & Ralf Rosenberger & Kovendh, 2017. "Microresonator-based solitons for massively parallel coherent optical communications," Nature, Nature, vol. 546(7657), pages 274-279, June.
    7. Georg Rademacher & Benjamin J. Puttnam & Ruben S. Luís & Tobias A. Eriksson & Nicolas K. Fontaine & Mikael Mazur & Haoshuo Chen & Roland Ryf & David T. Neilson & Pierre Sillard & Frank Achten & Yoshin, 2021. "Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Arslan Sajid Raja & Sophie Lange & Maxim Karpov & Kai Shi & Xin Fu & Raphael Behrendt & Daniel Cletheroe & Anton Lukashchuk & Istvan Haller & Fotini Karinou & Benn Thomsen & Krzysztof Jozwik & Junqiu , 2021. "Ultrafast optical circuit switching for data centers using integrated soliton microcombs," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    9. Boqiang Shen & Lin Chang & Junqiu Liu & Heming Wang & Qi-Fan Yang & Chao Xiang & Rui Ning Wang & Jijun He & Tianyi Liu & Weiqiang Xie & Joel Guo & David Kinghorn & Lue Wu & Qing-Xin Ji & Tobias J. Kip, 2020. "Integrated turnkey soliton microcombs," Nature, Nature, vol. 582(7812), pages 365-369, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaihang Lu & Zengqi Chen & Hao Chen & Wu Zhou & Zunyue Zhang & Hon Ki Tsang & Yeyu Tong, 2024. "Empowering high-dimensional optical fiber communications with integrated photonic processors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yuanbin Liu & Hongyi Zhang & Jiacheng Liu & Liangjun Lu & Jiangbing Du & Yu Li & Zuyuan He & Jianping Chen & Linjie Zhou & Andrew W. Poon, 2024. "Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Meiting Song & John Steinmetz & Yi Zhang & Juniyali Nauriyal & Kevin Lyons & Andrew N. Jordan & Jaime Cardenas, 2021. "Enhanced on-chip phase measurement by inverse weak value amplification," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Rui Niu & Ming Li & Shuai Wan & Yu Robert Sun & Shui-Ming Hu & Chang-Ling Zou & Guang-Can Guo & Chun-Hua Dong, 2023. "kHz-precision wavemeter based on reconfigurable microsoliton," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Chao Xiang & Joel Guo & Warren Jin & Lue Wu & Jonathan Peters & Weiqiang Xie & Lin Chang & Boqiang Shen & Heming Wang & Qi-Fan Yang & David Kinghorn & Mario Paniccia & Kerry J. Vahala & Paul A. Morton, 2021. "High-performance lasers for fully integrated silicon nitride photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Arkadev Roy & Luis Ledezma & Luis Costa & Robert Gray & Ryoto Sekine & Qiushi Guo & Mingchen Liu & Ryan M. Briggs & Alireza Marandi, 2023. "Visible-to-mid-IR tunable frequency comb in nanophotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Timothy P. McKenna & Hubert S. Stokowski & Vahid Ansari & Jatadhari Mishra & Marc Jankowski & Christopher J. Sarabalis & Jason F. Herrmann & Carsten Langrock & Martin M. Fejer & Amir H. Safavi-Naeini, 2022. "Ultra-low-power second-order nonlinear optics on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Grigory Lihachev & Wenle Weng & Junqiu Liu & Lin Chang & Joel Guo & Jijun He & Rui Ning Wang & Miles H. Anderson & Yang Liu & John E. Bowers & Tobias J. Kippenberg, 2022. "Platicon microcomb generation using laser self-injection locking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Yang He & Raymond Lopez-Rios & Usman A. Javid & Jingwei Ling & Mingxiao Li & Shixin Xue & Kerry Vahala & Qiang Lin, 2023. "High-speed tunable microwave-rate soliton microcomb," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Arslan Sajid Raja & Sophie Lange & Maxim Karpov & Kai Shi & Xin Fu & Raphael Behrendt & Daniel Cletheroe & Anton Lukashchuk & Istvan Haller & Fotini Karinou & Benn Thomsen & Krzysztof Jozwik & Junqiu , 2021. "Ultrafast optical circuit switching for data centers using integrated soliton microcombs," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    11. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Ronit Sohanpal & Haonan Ren & Li Shen & Callum Deakin & Alexander M. Heidt & Thomas W. Hawkins & John Ballato & Ursula J. Gibson & Anna C. Peacock & Zhixin Liu, 2022. "All-fibre heterogeneously-integrated frequency comb generation using silicon core fibre," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Mingming Nie & Jonathan Musgrave & Kunpeng Jia & Jan Bartos & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2024. "Turnkey photonic flywheel in a microresonator-filtered laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Giovanni Finco & Gaoyuan Li & David Pohl & Marc Reig Escalé & Andreas Maeder & Fabian Kaufmann & Rachel Grange, 2024. "Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    15. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Shahab Abdollahi & Mathieu Ladouce & Pablo Marin-Palomo & Martin Virte, 2024. "Agile THz-range spectral multiplication of frequency combs using a multi-wavelength laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35446-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.