IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v582y2020i7812d10.1038_s41586-020-2358-x.html
   My bibliography  Save this article

Integrated turnkey soliton microcombs

Author

Listed:
  • Boqiang Shen

    (California Institute of Technology)

  • Lin Chang

    (University of California Santa Barbara)

  • Junqiu Liu

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Heming Wang

    (California Institute of Technology)

  • Qi-Fan Yang

    (California Institute of Technology)

  • Chao Xiang

    (University of California Santa Barbara)

  • Rui Ning Wang

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Jijun He

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Tianyi Liu

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Weiqiang Xie

    (University of California Santa Barbara)

  • Joel Guo

    (University of California Santa Barbara)

  • David Kinghorn

    (University of California Santa Barbara
    Pro Precision Process and Reliability LLC)

  • Lue Wu

    (California Institute of Technology)

  • Qing-Xin Ji

    (California Institute of Technology
    Peking University)

  • Tobias J. Kippenberg

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Kerry Vahala

    (California Institute of Technology)

  • John E. Bowers

    (University of California Santa Barbara)

Abstract

Optical frequency combs have a wide range of applications in science and technology1. An important development for miniature and integrated comb systems is the formation of dissipative Kerr solitons in coherently pumped high-quality-factor optical microresonators2–9. Such soliton microcombs10 have been applied to spectroscopy11–13, the search for exoplanets14,15, optical frequency synthesis16, time keeping17 and other areas10. In addition, the recent integration of microresonators with lasers has revealed the viability of fully chip-based soliton microcombs18,19. However, the operation of microcombs requires complex startup and feedback protocols that necessitate difficult-to-integrate optical and electrical components, and microcombs operating at rates that are compatible with electronic circuits—as is required in nearly all comb systems—have not yet been integrated with pump lasers because of their high power requirements. Here we experimentally demonstrate and theoretically describe a turnkey operation regime for soliton microcombs co-integrated with a pump laser. We show the appearance of an operating point at which solitons are immediately generated by turning the pump laser on, thereby eliminating the need for photonic and electronic control circuitry. These features are combined with high-quality-factor Si3N4 resonators to provide microcombs with repetition frequencies as low as 15 gigahertz that are fully integrated into an industry standard (butterfly) package, thereby offering compelling advantages for high-volume production.

Suggested Citation

  • Boqiang Shen & Lin Chang & Junqiu Liu & Heming Wang & Qi-Fan Yang & Chao Xiang & Rui Ning Wang & Jijun He & Tianyi Liu & Weiqiang Xie & Joel Guo & David Kinghorn & Lue Wu & Qing-Xin Ji & Tobias J. Kip, 2020. "Integrated turnkey soliton microcombs," Nature, Nature, vol. 582(7812), pages 365-369, June.
  • Handle: RePEc:nat:nature:v:582:y:2020:i:7812:d:10.1038_s41586-020-2358-x
    DOI: 10.1038/s41586-020-2358-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2358-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2358-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Chao Xiang & Joel Guo & Warren Jin & Lue Wu & Jonathan Peters & Weiqiang Xie & Lin Chang & Boqiang Shen & Heming Wang & Qi-Fan Yang & David Kinghorn & Mario Paniccia & Kerry J. Vahala & Paul A. Morton, 2021. "High-performance lasers for fully integrated silicon nitride photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Mingming Nie & Jonathan Musgrave & Kunpeng Jia & Jan Bartos & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2024. "Turnkey photonic flywheel in a microresonator-filtered laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Yuanbin Liu & Hongyi Zhang & Jiacheng Liu & Liangjun Lu & Jiangbing Du & Yu Li & Zuyuan He & Jianping Chen & Linjie Zhou & Andrew W. Poon, 2024. "Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Timothy P. McKenna & Hubert S. Stokowski & Vahid Ansari & Jatadhari Mishra & Marc Jankowski & Christopher J. Sarabalis & Jason F. Herrmann & Carsten Langrock & Martin M. Fejer & Amir H. Safavi-Naeini, 2022. "Ultra-low-power second-order nonlinear optics on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Thibault Wildi & Alexander E. Ulanov & Thibault Voumard & Bastian Ruhnke & Tobias Herr, 2024. "Phase-stabilised self-injection-locked microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Pedro Tovar & Jean Pierre von der Weid & Yuan Wang & Liang Chen & Xiaoyi Bao, 2023. "A random optical parametric oscillator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Ki Youl Yang & Chinmay Shirpurkar & Alexander D. White & Jizhao Zang & Lin Chang & Farshid Ashtiani & Melissa A. Guidry & Daniil M. Lukin & Srinivas V. Pericherla & Joshua Yang & Hyounghan Kwon & Jess, 2022. "Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Mingxiao Li & Lin Chang & Lue Wu & Jeremy Staffa & Jingwei Ling & Usman A. Javid & Shixin Xue & Yang He & Raymond Lopez-rios & Theodore J. Morin & Heming Wang & Boqiang Shen & Siwei Zeng & Lin Zhu & K, 2022. "Integrated Pockels laser," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Ma, Yu-Lan & Li, Bang-Qing, 2022. "Kraenkel-Manna-Merle saturated ferromagnetic system: Darboux transformation and loop-like soliton excitations," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    17. Rui Niu & Ming Li & Shuai Wan & Yu Robert Sun & Shui-Ming Hu & Chang-Ling Zou & Guang-Can Guo & Chun-Hua Dong, 2023. "kHz-precision wavemeter based on reconfigurable microsoliton," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    18. Qiang Wang & Zhen Wang & Hui Zhang & Shoulin Jiang & Yingying Wang & Wei Jin & Wei Ren, 2022. "Dual-comb photothermal spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:582:y:2020:i:7812:d:10.1038_s41586-020-2358-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.