IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v414y2001i6859d10.1038_35102009.html
   My bibliography  Save this article

Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution

Author

Listed:
  • Yufeng Zhou

    (Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University)

  • João H. Morais-Cabral

    (Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University
    Yale University)

  • Amelia Kaufman

    (Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University)

  • Roderick MacKinnon

    (Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University)

Abstract

Ion transport proteins must remove an ion's hydration shell to coordinate the ion selectively on the basis of its size and charge. To discover how the K+ channel solves this fundamental aspect of ion conduction, we solved the structure of the KcsA K+ channel in complex with a monoclonal Fab antibody fragment at 2.0 Å resolution. Here we show how the K+ channel displaces water molecules around an ion at its extracellular entryway, and how it holds a K+ ion in a square antiprism of water molecules in a cavity near its intracellular entryway. Carbonyl oxygen atoms within the selectivity filter form a very similar square antiprism around each K+ binding site, as if to mimic the waters of hydration. The selectivity filter changes its ion coordination structure in low K+ solutions. This structural change is crucial to the operation of the selectivity filter in the cellular context, where the K+ ion concentration near the selectivity filter varies in response to channel gating.

Suggested Citation

  • Yufeng Zhou & João H. Morais-Cabral & Amelia Kaufman & Roderick MacKinnon, 2001. "Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution," Nature, Nature, vol. 414(6859), pages 43-48, November.
  • Handle: RePEc:nat:nature:v:414:y:2001:i:6859:d:10.1038_35102009
    DOI: 10.1038/35102009
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35102009
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35102009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwen Xin & Jingru Fu & Yongchao Qian & Lin Fu & Xiang-Yu Kong & Teng Ben & Lei Jiang & Liping Wen, 2022. "Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Ri-Jian Mo & Shuang Chen & Li-Qiu Huang & Xin-Lei Ding & Saima Rafique & Xing-Hua Xia & Zhong-Qiu Li, 2024. "Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Purushotham Selvakumar & Ana I. Fernández-Mariño & Nandish Khanra & Changhao He & Alice J. Paquette & Bing Wang & Ruiqi Huang & Vaughn V. Smider & William J. Rice & Kenton J. Swartz & Joel R. Meyerson, 2022. "Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Xingya Li & Gengping Jiang & Meipeng Jian & Chen Zhao & Jue Hou & Aaron W. Thornton & Xinyi Zhang & Jefferson Zhe Liu & Benny D. Freeman & Huanting Wang & Lei Jiang & Huacheng Zhang, 2023. "Construction of angstrom-scale ion channels with versatile pore configurations and sizes by metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Rongming Xu & Yuan Kang & Weiming Zhang & Bingcai Pan & Xiwang Zhang, 2023. "Two-dimensional MXene membranes with biomimetic sub-nanochannels for enhanced cation sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Adam C. Oken & Nicolas E. Lisi & Ipsita Krishnamurthy & Alanna E. McCarthy & Michael H. Godsey & Arthur Glasfeld & Steven E. Mansoor, 2024. "High-affinity agonism at the P2X7 receptor is mediated by three residues outside the orthosteric pocket," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Lilia Leisle & Kin Lam & Sepehr Dehghani-Ghahnaviyeh & Eva Fortea & Jason D. Galpin & Christopher A. Ahern & Emad Tajkhorshid & Alessio Accardi, 2022. "Backbone amides are determinants of Cl− selectivity in CLC ion channels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Marcos Matamoros & Xue Wen Ng & Joshua B. Brettmann & David W. Piston & Colin G. Nichols, 2023. "Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Ahmed Rohaim & Bram J. A. Vermeulen & Jing Li & Felix Kümmerer & Federico Napoli & Lydia Blachowicz & João Medeiros-Silva & Benoît Roux & Markus Weingarth, 2022. "A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Yue Wang & Yixiao Hu & Jian-Ping Guo & Jun Gao & Bo Song & Lei Jiang, 2024. "A physical derivation of high-flux ion transport in biological channel via quantum ion coherence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:414:y:2001:i:6859:d:10.1038_35102009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.