IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0082549.html
   My bibliography  Save this article

CLCN1 Mutations in Czech Patients with Myotonia Congenita, In Silico Analysis of Novel and Known Mutations in the Human Dimeric Skeletal Muscle Chloride Channel

Author

Listed:
  • Daniela Skálová
  • Jana Zídková
  • Stanislav Voháňka
  • Radim Mazanec
  • Zuzana Mušová
  • Petr Vondráček
  • Lenka Mrázová
  • Josef Kraus
  • Kamila Réblová
  • Lenka Fajkusová

Abstract

Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessive myotonia most likely affect properties of only the mutant monomer in the heterodimer, leaving the wild type monomer unaffected, while mutations causing dominant myotonia affect properties of both subunits in the heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by analysis of the CLCN1 gene and 2) structural analysis of mutations in the homology model of the human dimeric ClC-1 protein. In the first part, 34 different types of CLCN1 mutations were identified in 51 MC probands (14 mutations were new). In the second part, on the basis of the homology model we identified the amino acids which forming the dimer interface and those which form the Cl- ion pathway. In the literature, we searched for mutations of these amino acids for which functional analyses were performed to assess the correlation between localisation of a mutation and occurrence of a dominant-negative effect (corresponding to dominant MC). This revealed that both types of mutations, with and without a dominant-negative effect, are localised at the dimer interface while solely mutations without a dominant-negative effect occur inside the chloride channel. This work is complemented by structural analysis of the homology model which provides elucidation of the effects of mutations, including a description of impacts of newly detected missense mutations.

Suggested Citation

  • Daniela Skálová & Jana Zídková & Stanislav Voháňka & Radim Mazanec & Zuzana Mušová & Petr Vondráček & Lenka Mrázová & Josef Kraus & Kamila Réblová & Lenka Fajkusová, 2013. "CLCN1 Mutations in Czech Patients with Myotonia Congenita, In Silico Analysis of Novel and Known Mutations in the Human Dimeric Skeletal Muscle Chloride Channel," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
  • Handle: RePEc:plo:pone00:0082549
    DOI: 10.1371/journal.pone.0082549
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082549
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0082549&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0082549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raimund Dutzler & Ernest B. Campbell & Martine Cadene & Brian T. Chait & Roderick MacKinnon, 2002. "X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity," Nature, Nature, vol. 415(6869), pages 287-294, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sivamathini Rajappa & Pannaga Krishnamurthy & Hua Huang & Dejie Yu & Jiří Friml & Jian Xu & Prakash P. Kumar, 2024. "The translocation of a chloride channel from the Golgi to the plasma membrane helps plants adapt to salt stress," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Lilia Leisle & Kin Lam & Sepehr Dehghani-Ghahnaviyeh & Eva Fortea & Jason D. Galpin & Christopher A. Ahern & Emad Tajkhorshid & Alessio Accardi, 2022. "Backbone amides are determinants of Cl− selectivity in CLC ion channels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Zhao Yang & Xue Zhang & Shiwei Ye & Jingtao Zheng & Xiaowei Huang & Fang Yu & Zhenguo Chen & Shiqing Cai & Peng Zhang, 2023. "Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Tao Ma & Lei Wang & Anping Chai & Chao Liu & Wenqiang Cui & Shuguang Yuan & Shannon Wing Ngor Au & Liang Sun & Xiaokang Zhang & Zhenzhen Zhang & Jianping Lu & Yuanzhu Gao & Peiyi Wang & Zhifang Li & Y, 2023. "Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. David B. Sauer & Jennifer J. Marden & Joseph C. Sudar & Jinmei Song & Christopher Mulligan & Da-Neng Wang, 2022. "Structural basis of ion – substrate coupling in the Na+-dependent dicarboxylate transporter VcINDY," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Baobin Li & Christopher M. Hoel & Stephen G. Brohawn, 2021. "Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0082549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.