IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20888-5.html
   My bibliography  Save this article

NiH-catalyzed asymmetric hydroarylation of N-acyl enamines to chiral benzylamines

Author

Listed:
  • Yuli He

    (Nanjing University)

  • Huayue Song

    (Nanjing University)

  • Jian Chen

    (Nanjing University)

  • Shaolin Zhu

    (Nanjing University)

Abstract

Enantiomerically pure chiral amines and related amide derivatives are privilege motifs in many pharmacologically active molecules. In comparison to the well-established hydroamination, the transition metal-catalysed asymmetric hydrofunctionalization of enamines provides a complementary approach for their construction. Here we report a NiH-catalysed enantio- and regioselective reductive hydroarylation of N-acyl enamines, allowing for the practical access to a broad range of structurally diverse, enantioenriched benzylamines under mild, operationally simple reaction conditions.

Suggested Citation

  • Yuli He & Huayue Song & Jian Chen & Shaolin Zhu, 2021. "NiH-catalyzed asymmetric hydroarylation of N-acyl enamines to chiral benzylamines," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20888-5
    DOI: 10.1038/s41467-020-20888-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20888-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20888-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Gao & Wei-Cheng Xu & Xuan Nie & Kang-Jie Bian & Hong-Rui Yuan & Wen Zhang & Bing-Bing Wu & Xi-Sheng Wang, 2024. "Regio‐ and enantioselective nickel-alkyl catalyzed hydroalkylation of alkynes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Dong Liu & Zhao-Ran Liu & Zhen-Hua Wang & Cong Ma & Simon Herbert & Hartmut Schirok & Tian-Sheng Mei, 2022. "Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20888-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.